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1 Verify that

1

n2 + 1
− 1(n + 1)2 + 1

= 2n + 1(n2 + 1)(n2 + 2n + 2) . [1]

Use the method of differences to show that, for all N ≥ 1,

N

∑
n=1

2n + 1(n2 + 1)(n2 + 2n + 2) < 1
2
. [3]

Write down the value of ∞
∑
n=1

2n + 1(n2 + 1)(n2 + 2n + 2) . [1]

2 The curve C is defined parametrically by

x = t − ln t, y = 4t
1
2 ,

where t > 0. The arc of C joining the point where t = 1 to the point where t = 4 is rotated through one
complete revolution about the x-axis. Show that the area of the surface generated is 160

3
π. [6]

3 Find the general solution of the differential equation

d2y

dx2
+ 4

dy
dx

+ 29y = 58x + 37. [6]

4 Given that the variables x and y are related by

y = x + e−xy,

find the value of
d2y

dx2
when x = 0. [6]
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5

The diagram shows the curve C with polar equation r = eθ , where 0 ≤ θ ≤ 1
2
π. Find the maximum

distance of a point of C from the line θ = 1
2
π, giving the answer in exact form. [4]

Find the area of the finite region bounded by C and the lines θ = 0 and θ = 1
2
π, giving the answer in

exact form. [3]

6 The matrix A, given by

A = ( 7 −4 6
2 2 2−3 4 −2

) ,

has eigenvalues 1, 2, 4. Find a set of corresponding eigenvectors. [4]

Hence find the eigenvalues of B, where

B = ( 10 −4 6
2 5 2−3 4 1

) ,

and state a set of corresponding eigenvectors. [3]

7 The equation

x3 + 3x − 1 = 0

has roots α , β , γ . Use the substitution y = x3 to show that the equation whose roots are α3, β3, γ 3 is

y3 − 3y2 + 30y − 1 = 0. [2]
Find the value of α9 + β9 + γ 9. [5]

8 The sequence x1, x2, x3, . . . is such that x1 = 1 and

xn+1 = 1 + 4xn

5 + 2xn

.

Prove by induction that xn > 1
2

for all n ≥ 1. [5]

Prove also that x
n
> x

n+1
for all n ≥ 1. [3]
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9 Let

In = � 1

0

1(4 − x2)n dx,

for n = 1, 2, 3, . . . . Verify that

d
dx
[ x

(4 − x2)n] = 1 − 2n

(4 − x2)n + 8n

(4 − x2)n+1

and hence prove that

8nIn+1 = (2n − 1)In + 1
3n . [5]

Find the y-coordinate of the centroid of the region bounded by the axes, the line x = 1 and the curve

y = 1

4 − x2
,

giving your answer correct to 3 decimal places. [5]

10 The line l1 passes through the points P and Q whose position vectors are i − j − 2k and −2i + 5j + 13k
respectively. The line l2 passes through the point S whose position vector is i − 2j + 8k and is parallel
to the vector i − j − 3k. The point whose position vector is −i + 3j + 2k is on the line l

3
, the common

perpendicular to l1 and l2.

(i) Find, in the form r = a + tb, an equation for l3. [3]

(ii) Find the perpendicular distance from S to l3. [4]

(iii) Find the perpendicular distance from S to the plane which contains l
3

and passes through P. [4]

11 (a) Use de Moivre’s theorem to show that sin 8θ can be expressed in the form

sin θ cos θ(a sin6 θ + b sin4 θ + c sin2 θ + d),
where the value of the constant a is to be found and b, c, d are constants whose values need not
be found. [6]

(b) Use de Moivre’s theorem to show that

N

∑
n=1

sin nθ
2n = 2N+1 sin θ + sin Nθ − 2 sin(N + 1)θ

2N(5 − 4 cos θ) . [7]
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12 Answer only one of the following two alternatives.

EITHER

The curve C has equation

y = λx + x
x + 2

,

where λ is a non-zero constant.

(i) Find the asymptotes of C. [3]

(ii) Show that if λ > 0 then
dy
dx

> 0 at all points of C. [2]

(iii) Show that, for λ < −1
2
, C has two distinct stationary points, both to the left of the y-axis. [3]

(iv) In separate diagrams draw sketches of C for each of the cases λ > 0 and λ < −1
2
. [6]

OR

The linear transformation T : �4 → �4 is represented by the matrix

M = ⎛⎜⎜⎝
1 −2 2 4
2 −4 5 9
3 −6 8 14
5 −10 12 22

⎞⎟⎟⎠ .

(i) Find the rank of M. [3]

(ii) Obtain a basis for the null space, K, of T. [3]

(iii) Evaluate

M
⎛⎜⎜⎝
−1

2−3
4

⎞⎟⎟⎠ ,

and hence show that any solution of

Mx = ⎛⎜⎜⎝
5

11
17
27

⎞⎟⎟⎠ (∗)

has the form

⎛⎜⎜⎝
−1

2−3
4

⎞⎟⎟⎠ + λe1 + µe2,

where λ and µ are constants and {e1, e2} is a basis for K. [3]

(iv) Find the solution x1 of (∗) such that the first component of x1 is A, and the sum of all the
components of x1 is B. [5]
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