MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

9231 FURTHER MATHEMATICS
 9231/02
 Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0 .

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - May/June 2009	9231	02

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR - 1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - May/June 2009	9231	02

Qu No	Mark Scheme Details		Part Mark	Total
1	Find tangential acceleration, $l \mathrm{~d}^{2} \theta / \mathrm{d} t^{2}$: $l \cos \theta \mathrm{~d} \theta / \mathrm{d} t=l \cos \theta \sin \theta$ Find radial acceleration, $l(\mathrm{~d} \theta / \mathrm{d} t)^{2}$: $l \sin ^{2} \theta$ Combine to give $l \mathrm{~d} \theta / \mathrm{d} t$ (ignore magnitudes): A.G. $l \sqrt{ }\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \sin \theta=l \sin \theta$	M1 A1 M1 A1 B1	5	[5]
2	Find frequency ω using $T=2 \pi / \omega$: $\begin{aligned} & \omega=2 \pi / 0 \cdot 0225 \\ & {[=800 \pi / 9=279 \cdot 25]} \end{aligned}$ Find $v_{\max }$ using $v_{\max }=a \omega$: $v_{\max }=0.0105 \omega ;=2.93[2]$ Find v using $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)$ $v=\omega \sqrt{ }\left(0.0105^{2}-0.0055^{2}\right)$ or $\omega t=\sin ^{-1}(x / a)=[0.5513], v=a \omega \cos \omega t$: $[t=0.00197], v=2.50 \quad$ A.G.	M1 A1 M1 A1; A1 M1 A1	5 2	[7]
3	Use perp. axes theorem for both discs (or lamina): $\quad I_{2 a}=m_{2 a} a^{2}$ or $I_{a}=1 / 4 m_{a} a^{2}$ Combine to find MI of lamina about diameter (or T): $\quad I=I_{2 a}-I_{a} \quad\left[=a^{2}\left(m_{2 a}-1 / 4 m_{a}\right)\right]$ Use par. axes theorem for lamina (or both discs): $\quad I_{T}=I+4 m a^{2}$ Find masses of both discs in terms of m : $m_{2 a}=4 m / 3$ and $m_{a}=m / 3$ Combine to find MI of lamina about T : $I_{T}=a^{2}(4-1 / 4) m / 3+4 m a^{2}$ $=5 m a^{2} / 4+4 m a^{2}=21 m a^{2} / 4$ A.G. Relate initial KE to change in PE at highest pt: $1 / 2 I_{T} \omega^{2} \text { and } 4 m g a$ Find set of values [or max. value] of ω (A.E.F.): $\omega<\sqrt{ }(32 g / 21 a)$ or $1.23 \sqrt{ }(\mathrm{~g} / a)$ or $3.90 / \sqrt{ } a$	M1 M1 M1 B1 A1 M1 A1 A1	5 3	[8]
4	Find R_{A} by taking moments about C for system: Deduce by taking moments about O for sphere: Resolve horizontally for system: Find any F by e.g. vertical resolution for $A B$ or taking moments about B for $A B$: Find R_{B} by e.g. hor. resolution for rod or sphere: $\begin{aligned} & 1 \cdot 4 R_{A}=1 \cdot 0 \times 14, R_{A}=10 \text { A.G. } \\ & F_{B}=F_{C} \quad \text { A.G. } \\ & F_{A}=F_{C} \quad \text { A.G. } \\ & F_{B}=14-R_{A}=4 \\ & F_{A}=\left(0 \cdot 8 R_{A}-0 \cdot 4 \times 14\right) / 0 \cdot 6=4 \\ & R_{B}=F_{A} \text { or } F_{C} \quad[=4] \end{aligned}$ Find R_{C} by e.g. vert. resolution for sphere or system: $\begin{aligned} R_{C} & =36+F_{B} \text { or } 50-R_{A}=40 \\ \mu_{\text {min }} & =\max \left\{F_{A} / R_{A}, F_{B} / R_{B}, F_{C} / R_{C}\right\} \\ & =\max \{4 / 10,4 / 4,4 / 40\}=1 \end{aligned}$	M1 A1 B1 B1 M1 A1 (M1 A1) M1 M1 A1 M1 A1	2 2 7	[11]

Page 5 Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE A LEVEL - May/June 2009	$\mathbf{9 2 3 1}$	$\mathbf{0 2}$

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Qu No \& \multicolumn{4}{|l|}{Mark Scheme Details} \& Part \& Total \\
\hline 5 \& \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Find max. speed of \(B\) using elasticity: \\
Use conservation of momentum: \\
Equate speeds normal to wall, e.g.: \\
Equate speeds parallel to wall, e.g.: \\
Eliminate \(\alpha\) by squaring and adding: \\
Relate KEs: \\
Hence eliminate speeds to find \(e\) : \\
Show that B leaves wall at \(30^{\circ}\) :
\end{tabular} \& \[
\begin{aligned}
\& v=e_{1} u \leq u \quad[o r<u] \quad \text { A.G. } \\
\& m_{1} u=m_{2} v \leq m_{2} u \quad \text { A.G. } \\
\& V \sin \alpha=e v \sin 60^{\circ} \text { or } \mathrm{e} v \sqrt{3} / 2 \\
\& V \cos \alpha=v \cos 60^{\circ} \text { or } v / 2 \\
\& V^{2}=v^{2}\left(e^{2} \sin ^{2} 60^{\circ}+\cos ^{2} 60^{\circ}\right) \\
\& 1 / 2 m V^{2}=1 / 3\left(1 / 2 m v^{2}\right) \\
\& e^{2}=(1 / 3-1 / 4) / 3 / 4=1 / 9, e=1 / 3 \\
\& \tan \alpha=e \tan 60^{\circ}=1 / \sqrt{3}, \quad \alpha=30^{\circ}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 A1 } \\
\& \text { M1 A1 } \\
\& \text { M1 } \\
\& \text { M1 } \\
\& \text { M1 } \\
\& \text { B1 } \\
\& \text { M1 A1 } \\
\& \text { M1 A1 }
\end{aligned}
\] \& \begin{tabular}{l}
2 \\
2 \\
8
\end{tabular} \& [12] \\
\hline 6 \& \begin{tabular}{l}
Find \\
Use \\
Find \\
(1.72 \\
Hen
\end{tabular} \& \begin{tabular}{l}
mple mean: \\
mply confidence interval formula: \\
\% interval semi-width: \\
2.086 or \(1.645 / 1.96\) lose A1 only) \\
\(0 \%\) confidence interval:
\end{tabular} \& \[
\begin{aligned}
\& \bar{x}=1 / 2(481+509)=495 \\
\& \bar{x} \pm t s / \sqrt{ } n, \text { any } t \text { or } z \quad[s=29.9] \\
\& \left(t_{19,0.95} / t_{19,0.975}\right) 14 \\
\& =(1.729 / 2.093) 14=11.6 \\
\& {[483 \cdot 4,506 \cdot 6] \text { or }[483,507]}
\end{aligned}
\] \& \begin{tabular}{l}
M1 A1 \\
M1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 6 \& [6] \\
\hline 7 \& \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
State choice of line with reason (A.E.F.): \\
Find coefficient \(b\) in regression line for \(y\) : \\
Find equation of regression line: \\
SR: M1 A1 for finding \(x\) on \(y\) : \\
Find \(x\) when \(y=0\) : \\
SR: If using eqn of \(x\) on \(y\) : \\
Valid comment on reliability:
\end{tabular} \& \begin{tabular}{l}
\(y\) depends on \(x\) so choose \(y\) on \(x\)
\[
\begin{aligned}
b \& =(66 \cdot 1-3.25 \times 268 / 10) / \\
\& \quad\left(1 \cdot 2625-3 \cdot 25^{2} / 10\right) \\
\& =-21 / 0.20625=-101.8 \text { or }-102 \\
y \& =b(x-0.325)+26.8 \\
\& =59.9-102 x \\
x \& =0.563-0.00888 y
\end{aligned}
\]
\[
59.9 / 102=0.587 \text { or } 0.588 \text { or } 0.59
\]
\[
0.563
\] \\
OK since point just outside range \\
OK as \(r \approx-1\) or \(|r| \approx 1 \quad\) (A.E.F.)
\end{tabular} \& \begin{tabular}{l}
M1 A1 \\
M1 A1 \\
(M1 A1) \\
M1 A1 \\
(B1) \\
B1
\end{tabular} \& 5

3 \& [8]

\hline
\end{tabular}

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - May/June 2009	$\mathbf{9 2 3 1}$	$\mathbf{0 2}$

Qu No	Mark Scheme Details		Part Mark	Total
8		M1 M1 A1 M1 *B1 *A1 M1 A1	6 2	[8]
9		B1 M1 A1 M1 *A1 *B1 $\sqrt{ }$ B1 M1 A1	$\begin{aligned} & 7 \\ & 2 \end{aligned}$	[9]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - May/June 2009	$\mathbf{9 2 3 1}$	$\mathbf{0 2}$

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - May/June 2009	9231	02

\begin{tabular}{|c|c|c|c|c|c|}
\hline Qu No \& Mark Scheme Details \& \& \& \begin{tabular}{l}
Part \\
Mark
\end{tabular} \& Total \\
\hline \begin{tabular}{l}
\[
11
\] \\
EITHER
\end{tabular} \& \begin{tabular}{l}
Find tension \(T\) : \\
Apply Newton's law of motion to \(B\) : \\
Combine: \\
Substitute e.g. \(y=x-1 / 4 a\) and rearrange: \\
State centre of motion, or derive from \(y=0\) : \\
Find \(x\) when \(A\) starts to slip using \(F=\mu R\) : \\
Valid use of SHM eqn to find time \(t_{s}\) to slipping: \\
EITHER: Valid use of cosine form: \\
\(O R: \quad\) Valid use of sine form: \\
Substitute for \(y_{s}, y_{\max }\) : \\
Find \(t_{s}\) : \\
Substitute \(\omega=2 \sqrt{ }(g / a)\) and evaluate:
\end{tabular} \& \[
\begin{aligned}
\& T=4 m g x / a \\
\& m \mathrm{~d}^{2} x / \mathrm{d} t^{2}=m g-T \\
\& \mathrm{~d}^{2} x / \mathrm{d} t^{2}=-(g / a)(4 x-a) \quad \text { A.G. } \\
\& \mathrm{d}^{2} y / \mathrm{d} t^{2}=-(4 g / a) y \\
\& x_{c}=1 / 4 a \\
\& T=1 / 3 m g, x_{s}=a / 12 \\
\& y=y_{\max } \cos \omega t \text { or } y_{\max } \sin \omega t \\
\& y_{s}=y_{\max } \cos \omega t_{s} \\
\& t_{s}=t_{1}-t_{2}, y_{\max }=y_{\max } \sin \omega t_{1} \\
\& \quad y_{s}=y_{\max } \sin \omega t_{2} \\
\& y_{s} / y_{\max }=\left(x_{c}-x_{s}\right) / x_{c} \\
\& \quad=(a / 6) /(a / 4)=2 / 3 \\
\& t_{s}=\left(\cos ^{-1} 2 / 3\right) / \omega \\
\& \text { or }\left(1 / 2 \pi-\sin ^{-1} 2 / 3\right) / \omega \\
\& t_{s}=0 \cdot 421 \sqrt{ }(a / g)
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
M1 A1 \\
A1 \\
M1 A1 \\
M1 \\
M1 \\
(M1) \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& 3
3

8 \& [14]

\hline \[
$$
\begin{aligned}
& 11 \\
& \text { OR }
\end{aligned}
$$

\] \& | State hypotheses: |
| :--- |
| State assumption [A.E.F.]: |
| Estimate common variance: |
| Use correct tabular value of t : |
| Formulate rejection region (with any t; allow $>$): |
| Compare actual sample means with region: or compare calculated t with tabular t : |
| Consistent conclusion (A.E.F.; dep values above): |
| State condition on a (with any t; allow $>$ or $=$): |
| Use correct tabular value of t : |
| Substitute to find largest value of a : | \& | $\mathrm{H}_{0}: \mu_{E}=\mu_{W}, \quad \mathrm{H}_{1}: \mu_{E} \neq \mu_{W}$ |
| :--- |
| Two populations have Normal distns. and common variance $\begin{aligned} & \sigma^{2}=(5 \times 0.0231+4 \times 0.0195) / 9 \\ & \quad=0.0215 \text { or } 0.1473^{2} \\ & t_{9,0.975}=2.26[2] \\ & \left.\right\|_{\bar{x}_{E}}-\bar{x}_{W} \mid \geq t \sigma \sqrt{ }(1 / 6+1 / 5) \\ & =0.201 \\ & 0.253>0.201 \sqrt{ } \\ & 2.85>2.26[2] \sqrt{ } \end{aligned}$ |
| Mean acidity levels do differ $\begin{aligned} & \bar{x}_{E}-\bar{x}_{W}-a \geq t \sigma \sqrt{ }(1 / 6+1 / 5) \\ & t_{9,0.95}=1.83[3] \\ & a_{\max }=0.253-0.163=0.09(2 \mathrm{dp}) \end{aligned}$ | \& | B1 |
| :--- |
| B1 |
| M1 |
| A1 |
| B1 |
| M1 |
| A1 |
| M1 A1 |
| A1 |
| M1 |
| A1 |
| M1 A1 | \& 1

9
9
4 \& [14]

\hline
\end{tabular}

