MARK SCHEME for the October/November 2008 question paper

9231 FURTHER MATHEMATICS

9231/01
Paper 1, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.
Syllabus \quad Paper

GCE A/AS LEVEL - October/November 2008

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0 .

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2008	9231	01

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR-1 A penalty of MR-1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.
$1 \dot{x}=4 t^{3}-4 / t, \dot{y}=8 t$ B1

$$
s=\int_{0}^{4}\left[\left(4 t^{3}-4 / t\right)^{2}+64 t^{2}\right]^{1 / 2} d t
$$

$$
\left[\left(4 t^{3}-4 / t\right)^{2}+64 t^{2}\right]^{1 / 2}=4 t^{3}+4 / t
$$

$$
s=\left[t^{4}+4 \ln t\right]_{2}^{4}=240+4 \ln 2
$$

$2 \operatorname{MV}(y$ wrt $x)$ over $[0,2]=(1 / 2) \int_{0}^{2} \mathrm{e}^{x} d x=(1 / 2)\left[\mathrm{e}^{x}\right]_{0}^{2}=\left(\mathrm{e}^{2}-1\right) / 2(=3.19) \quad$ M1A1

$$
\frac{\int_{1}^{\mathrm{e}^{2}} \ln y d y}{\mathrm{e}^{2}-1}
$$

$=\frac{[y \ln y-y]_{1}^{\mathrm{e}^{2}}}{\mathrm{e}^{2}-1}$ M1A1 (for integration of $\ln y$) - can be earned independently
$=\left[\frac{2 \mathrm{e}^{2}-\mathrm{e}^{2}}{\mathrm{e}^{2}-1}\right]-\left[\frac{-1}{\mathrm{e}^{2}-1}\right]$ (oew)
$=\frac{\mathrm{e}^{2}+1}{\mathrm{e}^{2}-1}$
A1 (AG)

Page 5	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2008	9231	01

3 Approximately correct curve passing through the pole, O, and the point $A\left(\pi^{2} / 4,0\right)$.
Negative gradient at A B1

Correct form at O.

Area $=(1 / 2) \int_{0}^{\pi / 2}(\pi / 2-\theta)^{4} d \theta$
$=-(1 / 10)\left[(\pi / 2-\theta)^{5}\right]_{0}^{\pi / 2}$
A1
$=\pi^{5} / 320$
A1
$4 \quad \mathbf{A e}=\lambda \mathbf{e}$
$\mathbf{A}^{2} \mathbf{e}=\mathbf{A}(\mathbf{A}) \mathbf{e}=\mathbf{A}(\lambda \mathbf{e})=\lambda(\mathbf{A e})=\lambda^{2} \mathbf{e} \Rightarrow$ eigenvalue is λ^{2}
$\mathbf{A e}=3 \mathbf{e}$ for some \mathbf{e}
$\Rightarrow\left(\mathbf{A}^{4}+3 \mathbf{A}^{2}+2 \mathbf{I}\right) \mathbf{e}=81 \mathbf{e}+27 \mathbf{e}+2 \mathbf{e}=110 \mathbf{e}$
\Rightarrow an eigenvalue is 110
OR

3 is an eigenvalue of \mathbf{A}
$\therefore 3^{2}=9$ is an eigenvalue of \mathbf{A}^{2}
and $3^{4}=81$ is an eigenvalue of \mathbf{A}^{4}
eigenvalue of $\mathbf{A}^{4}+3 \mathbf{A}^{2}+2 \mathbf{I}$
$=81+3 \times 9+2$ (Adding $\geqslant 2$ terms)
$=110$

Page 6	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2008	$\mathbf{9 2 3 1}$	01

$5 \quad 2 x-x y_{1}-y-4 y y_{1}=0$
$\Rightarrow \ldots y_{1}(2)=2(\mathrm{AG})$
$2-x y_{2}-y_{1}-y_{1}-4 y_{1}^{2}-4 y y_{2}=0$
$2-2 y_{2}(2)-2-2-16=0 \Rightarrow y_{2}(2)=-9$

OR
$2 x-y=(4 y+x) \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{2 x-y}{4 y+x}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{(4 x+y)\left(2-y_{1}\right)-(2 x-y)\left(1+4 y_{1}\right)}{(x+4 y)^{2}}$
M1 Use of quotient rule A1 \geqslant term of numerator A1 All correct

$$
=\frac{8 \times 0-4 \times 9}{4}
$$

$=-9$

6 (i) Reduction of \mathbf{A} to echelon form, e.g.,
$\left(\begin{array}{cccc}1 & -1 & -2 & -3 \\ 0 & -1 & 3 & -4 \\ 0 & 0 & 0 & \alpha-9 \\ 0 & 0 & 0 & 0\end{array}\right)$
$\alpha=9 \Rightarrow$ last 2 rows consist entirely of zeros $\Rightarrow r(\mathbf{A})=2$
A basis for the null space of \mathbf{A} is $\left\{\left(\begin{array}{l}5 \\ 3 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ 4 \\ 0 \\ -1\end{array}\right)\right\}$, or equivalent
(ii) $\alpha-9 \neq 0$
$r(\mathbf{A})=3$
$7 \quad D\left[x\left(1+x^{4}\right)^{-n}\right]=\left(1+x^{4}\right)^{-n}-4 n x^{4}\left(1+x^{4}\right)^{-n-1}$
$=(1-4 n)\left(1+x^{4}\right)^{-n}+4 n\left(1+x^{4}\right)^{-n-1}$
$\Rightarrow\left[\dot{x}\left(1+x^{4}\right)^{-n}\right]_{0}^{1}=(1-4 n) I_{n}+4 n I_{n+1}$
$\Rightarrow 4 n I_{n+1}=2^{-n}+(4 n-1) I_{n}(\mathrm{AG})$
$8 I_{3}=1 / 4+7 I_{2}, 4 I_{2}=1 / 2+3 I_{1}$
$I_{3}=9 / 64+(21 / 32) I_{1} \approx 0.7096$ or 0.710
OR
$n=1 \quad 4 I_{2}=\frac{1}{2}+3 \times 0.86697 \Rightarrow I_{2}=0.7752275$
$n=2 \quad 8 I_{3}=\frac{1}{4}+7 \times 0.7752275 \Rightarrow I_{3}=0.7095740625$
$\therefore I_{3}=0.7096$ or 0.710
(No penalty for correct 5 dp value.)
M1 Use of formula
A1 Gets I_{2}
A1ft Subs value for I_{2} in I_{3} formula
A1 obtains I_{3} correct (cao)

8 AQE has roots $-3 / 5 \pm(4 / 5) \mathrm{i}$
CF: $\mathrm{e}^{-3 t / 5}[A \cos (4 t / 5)+B \sin (4 t / 5)]$ A1
$\mathrm{PI}=a t^{2}+b t+c \Rightarrow 10 a+6(2 a t+b)+5\left(a t^{2}+b t+c\right) \equiv 5 t^{2}+12 t+15$ M1
$5 a=5,12 a+5 b=12,10 a+6 b+5 c=15$
$\Rightarrow a=1, b=0, c=1$
$\mathrm{GS}: y=\mathrm{e}^{-3 t / 5}[A \cos (4 t / 5)+B \sin (4 t / 5)]+t^{2}+1$ A1
$y(0)=0 \Rightarrow 0=A+1 \Rightarrow A=-1$
$\dot{y}=-\left(3 / 5 \mathrm{e}^{-3 t / 5}[A \cos (4 t / 5)+B \sin (4 t / 5)]+\mathrm{e}^{-3 t / 5}[(-4 A / 5) \sin (4 t / 5)+(4 B / 5) \cos (4 t / 5)]+2 t\right.$
$\Rightarrow \dot{y}(0)=0 \Rightarrow-3 A / 5+4 B / 5=0$
$\Rightarrow B=-3 / 4 \Rightarrow y=-(1 / 4) \mathrm{e}^{-3 t / 5}\left[(4 \cos (4 t / 5)+3 \sin (4 t / 5)]+t^{2}+1\right.$
or $-1.25 \cos (0.8 t-0.64)$
or $1.25 \cos (0.8 t+2.50)$ etc.

Page 9	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2008	9231	01

9 Set up

$$
\begin{equation*}
H_{k}: \sum_{n=1}^{k} \frac{4 n+1}{n(n+1)(2 n-1)(2 n+1)}=1-\frac{1}{(k+1)(2 k+1)} \tag{B1}
\end{equation*}
$$

for some positive integer k

$$
\begin{aligned}
& H_{k} \Rightarrow \sum_{n=1}^{k+1} \frac{4 n+1}{n(n+1)(2 n-1)(2 n+1)}=1-\frac{1}{(k+1)(2 k+1)}+\frac{4 k+5}{(k+1)(k+2)(2 k+1)(2 k+3)} \\
& =1-\frac{2 k^{2}+3 k+1}{(k+1)(k+2)(2 k+1)(2 k+3)} \\
& =\ldots=1-\frac{1}{(k+2)(2 k+3)}
\end{aligned}
$$

Verifies H_{1} is true.
Correct completion of induction argument

$$
\begin{aligned}
& \sum_{n=N+1}^{2 N} \frac{4 n+1}{n(n+1)(2 n-1)(2 n+1)}=\ldots=\frac{1}{(N+1)(2 N+1)}-\frac{1}{(2 N+1)(4 N+1)} \\
& =\frac{3 N}{(N+1)(2 N+1)(4 N+1)}<\frac{3 N}{N .2 N .4 N}=\frac{3}{8 N^{2}}
\end{aligned}
$$

OR
$=\frac{3 N}{8 N^{3}+14 N^{2}+7 N+1}=\frac{3}{8 N^{2}+14 N+7+\frac{1}{N}}$

Since $N \geqslant 1 \quad 14 N+7+\frac{1}{N}>0$
$\therefore \sum<\frac{3}{8 N^{2}}$

Page 10 Mark Scheme	Syllabus	Paper	
	GCE A/AS LEVEL - October/November 2008	9231	01

10 Write $c=\cos \theta, s=\sin \theta, c_{n}=\cos (n \theta)$
$c_{8}+\mathrm{i} s_{8}=(c+i s)^{8} \Rightarrow c_{8}=c^{8}-28 c^{6} s^{2}+70 c^{4} s^{4}-28 c^{2} s^{6}+s^{8}$
M1A1
$\Rightarrow c_{8}=c^{8}-28 c^{6}\left(1-c^{2}\right)+70 c^{4}\left(1-2 c^{2}+c^{4}\right)-28 c^{2}\left(1-3 c^{2}+3 c^{4}-c^{6}\right)+\left(1-4 c^{2}+6 c^{4}-4 c^{6}+c^{8}\right)$
$\Rightarrow c_{8}=128 c^{8}-256 c^{6}+160 c^{4}-32 c^{2}+1 \quad \quad^{*}$ A1
(i) $\theta \rightarrow \pi / 2-\theta$ in (*) leads to:

$$
c_{8}=128 s^{8}-256 s^{6}+160 s^{4}-32 s^{2}+1
$$

(ii) From (${ }^{*}$), $x=\cos ^{2} \pi / 8 \Rightarrow 32\left(4 x^{4}-8 x^{3}+5 x^{2}-x\right)+1=\cos \pi=-1$

$$
\Rightarrow 4 x^{4}-8 x^{3}+5 x^{2}-x=-1 / 16
$$

$11(2 \mathbf{j}-\mathbf{k}) \times(3 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k})=-2 \mathbf{i}-3 \mathbf{j}-6 \mathbf{j}$ (oew)
$\Pi_{1}: 2 x+3 y+6 z=14 \quad(\mathrm{AG})$
Perpendicular distance, p, of P from l in terms of 1 parameter, e.g.,
$p=(1 / 7) \mid 2(3+4 \lambda)+3(8+6 \lambda)+6(2+5 \lambda)-14$
$=|4+8 \lambda|$
$p \leqslant 4 \Rightarrow-1 \leqslant \lambda \leqslant 0$
$(3 \mathbf{i}+8 \mathbf{j}+2 \mathbf{k})-(\mathbf{i}+2 \mathbf{j}+\mathbf{k})=2 \mathbf{i}+6 \mathbf{j}+\mathbf{k}$
$(2 \mathbf{i}+6 \mathbf{j}+\mathbf{k}) \times(4 \mathbf{i}+6 \mathbf{j}+5 \mathbf{k})=24 \mathbf{i}-6 \mathbf{j}-12 \mathbf{k}$
$\cos \alpha=|(2 \mathbf{i}+3 \mathbf{j}+6 \mathbf{k}) .(4 \mathbf{i}-\mathbf{j}-2 \mathbf{k}) / 7 \sqrt{21}|=1 / \sqrt{21}$
$\alpha=77.4^{\circ}$

Page 11	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2008	9231	01

12 EITHER

(i) $x=1, x=3$ (both)
$y=1$
(ii) Solves $(x-2)(x-a) /(x-1)(x-3)=1$ to obtain $x=\xi$ where $\xi=(2 a-3) /(a-2)$
(iii) $y_{1}=0 \Rightarrow(x-2)(x-a)(2 x-4)=(x-1)(x-3)(2 x-2-a)$
$\Rightarrow(-4-4-2 a) x^{2}+(4 a+8+4 a) x-8 a=(-8-2-a) x^{2}+(6+8+4 a) x-6-3 a$ A1
$\Rightarrow(a-2) x^{2}+(6-4 a) x+(5 a-6)=0(\mathrm{AG})$ A1

$$
(6-4 a)^{2} \geqslant 4(a-2)(5 a-6)
$$M1

$\Rightarrow a^{2}-4 a+3 \leqslant 0 \Rightarrow(a-1)(a-3) \leqslant 0 \quad$ M1
$\Rightarrow 1<a<3(a \neq 2$ given $)$ A1
(iv) (a) Axes and asymptotes B1
Branches (all) B1
(b) Middle branch with maximum value in the range $0<y<1$ B1
Outside branches with correctly placed minimum point
OR
(i) α a root of given equation $\Rightarrow \alpha^{4}-5 \alpha^{2}+2 \alpha-1=0$
$\Rightarrow \alpha^{n+4}-5 \alpha^{n+2}+2 \alpha^{n+1}-\alpha^{n}=0$ M1
Summing over $\alpha, \beta, \gamma, \delta$, leads to $S_{n+4}-5 S_{n+2}+2 S_{n+1}-S_{n}=0 \quad$ A1
(ii) $\begin{aligned} & S_{2}=10 \\ & \\ & S_{4}=5 S_{2}-2 S_{1}+4=50-0+4=54\end{aligned}$ B1 M1A1
(iii) $S_{-1}=2$ from e.g., $y^{4}-2 y^{3}+5 y^{2}-1=0$
$S_{3}=5 S_{1}-2 S_{0}+S_{-1}=-6$
OR
$2 S_{3}=3 S_{1} S_{2}-S_{1}^{3}+6 \sum \alpha \beta \gamma$ M1A1
$=3 \times 10 \times 0-0+6 \times(-2)$
$\Rightarrow S_{3}=-6$
$S_{6}=5 S_{4}-2 S_{3}+S_{2}=292$
(iv) $\sum \alpha^{2} \beta^{4}=S_{2} S_{4}-S_{6}=540-292=248$

