
Analytical techniques (Chapter 22)

- In paper chromatography, solvent is called the **mobile phase**, while the water trapped between the cellulose fibres of the paper is called **stationary phase**
- Different rates of movements are due to the mixtures' solubilities towards the solvent and the water different partition coefficients

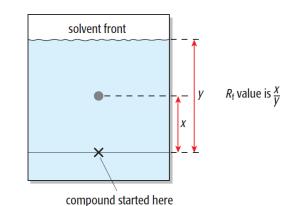
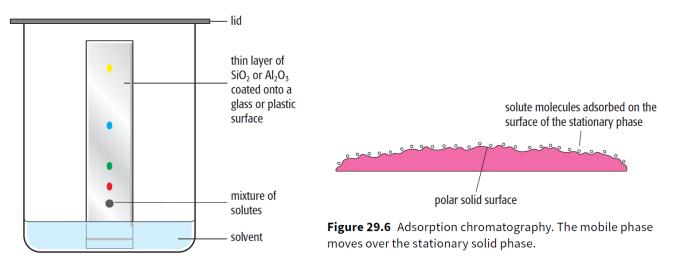
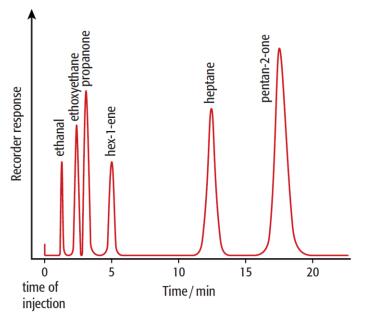


Figure 29.2 a Paper chromatography. **b** The chromatogram produced. Components of the mixture can be identified by comparison with pure reference compounds or by calculating *R*_f values (see Figure 29.3) and comparing these values with those in tables of data.

- The *R*_f values (retardation factors) of substances, which is the ratio of the distance travelled by a particular component compared with the distance travelled by the solvent, are calculated in figure 29.3
- Sometimes two or more components in a mixture can have similar *R*_f values in a particular solvent, hence overlapping occurs; so **two-way chromatography** can be used (figure 29.4)


Figure 29.4 Two-way paper chromatography to separate solutes with similar $R_{\rm f}$ values in a solvent. The technique can also be used with thin-layer chromatography (see page 436).


Figure 29.3 How to calculate *R*_f values, which are then compared with reference values obtained under identical conditions.

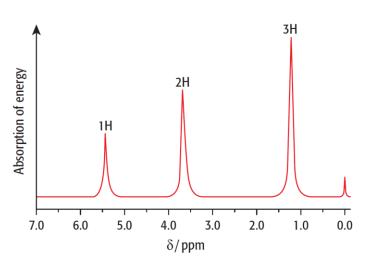
- In **thin-layer chromatography (TLC)**, the solid stationary phase adsorbs solute molecules onto its surface
 - Faster than paper chromatography and can be used on smaller samples

Polar molecules have greater attraction towards the stationary phase (adsorbed more strongly onto its surface); therefore travels more slowly resulting to separations; identified by calculating the R_f values

- **Gas-liquid chromatography** (GLC) uses partitioning to separate and identify the components in a mixture; a gaseous sample enters the column, where the sample is moved through an inert gas carrier; method used for gases, liquids and volatile solids (vapour form)
 - The detector detects the retention time (time taken for component to pass through the column); the area under each peak corresponds to the amount of solute emerging from the column
- The chromatogram obtained using the same carrier gas, flow rate, stationary phase and temperature
- Figure 29.11 shows a chromatogram obtained using GLC:

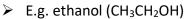
Figure 29.11 A gas chromatogram from a mixture of volatile organic compounds.

- Determination of percentage composition of a mixture by GLC:
 - The composition peaks are identified
 - The areas under each peak recorded is proportional to the amount of solute emerging from the column
 - > The area of each is measured by (as they are roughly triangular):


The percentage composition given by:

(approx.) % of ester A

 $= \frac{\text{peak area (or height) of A}}{\text{sum of the areas (or heights) of A, B and C}} \times 100$


Low-resolution proton NMR spectrum:

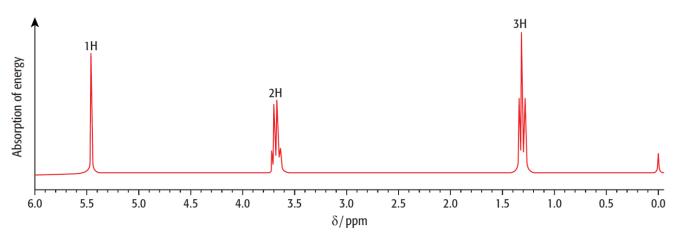

Shows a single peak for each non-equivalent hydrogen atom

Figure 29.17 The low-resolution NMR spectrum of ethanol, CH₃CH₂OH.

- The area under each peak tells us the relative number of equivalent ¹H atoms responsible for the particular chemical shift
- Largest peak: –CH₃ hydrogen atoms; middle peak: –CH₂ hydrogen atoms; smallest peak: –OH hydrogen atoms
- The type of H atom present can be checked against tables of data (ppm value)
- High-resolution proton NMR spectrum:
 - > The splitting pattern of a peak depends on the number of hydrogen atoms on the adjacent carbon atom(s); using the n + 1 rule, where n is the number of ¹H atoms on the adjacent carbon atom

Figure 29.18 The high-resolution NMR spectrum of ethanol, showing the splitting pattern in two of the peaks. The area under each series of peaks still represents the number of equivalent ¹H atoms in the molecule, as in low-resolution NMR.

The CH₃ peak is split into three because there are two ¹H atoms on the adjacent CH₂ group; n + 1 = 3 (triplet)

- The CH₂ peak is split into four as there are three ¹H atoms on the adjacent CH₃ group; n + 1 = 4 (quartet)
- The –OH signal apeears as a single peak, as the –OH proton excanngws rapidly with protons in water present:

 $CH_3CH_2OH + H_2O \Longrightarrow CH_3CH_2OH + HOH$

- Exchanges also occur with amines and amides which contain –NH– group
- These peaks will disappear from the spectra by the addition of deuterium oxide, D₂O, to the sample
 - Exchanges reversibly with the protons in the –OH or –NH– groups
 - D₂O atoms do not absorb in the same region of the electromagnetic spectrum as protons, hence the disappearance

 $-OH + D_2O \rightleftharpoons -OD + HOD$

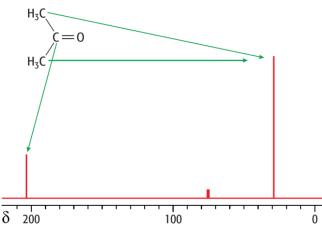
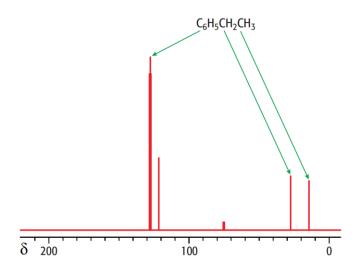
 $-NH-CO + D_2O \implies -ND-CO + HOD$

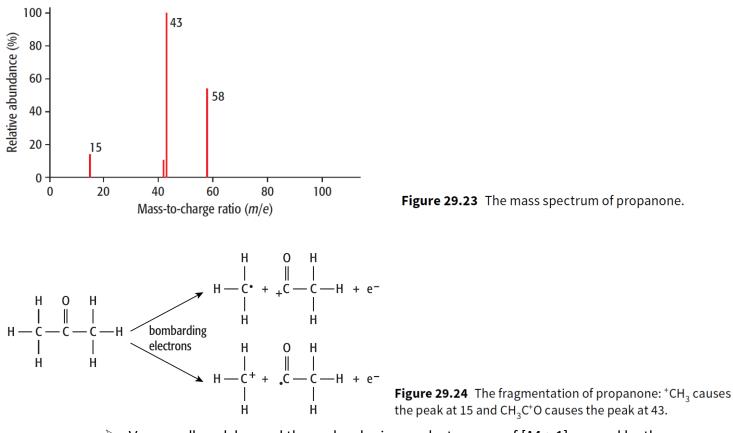
Number of adjacent ¹ H atoms	Using the <i>n</i> + 1 rule, the peak will be split into	Relative intensities in the splitting pattern	Observed on the NMR spectrum as
0	1 peak, called a singlet	1	
1	2 peaks, called a doublet	1:1	
2	3 peaks, called a triplet	1:2:1	M
3	4 peaks, called a quartet	1:3:3:1	

 Table 29.2
 Splitting patterns in high-resolution NMR spectra.

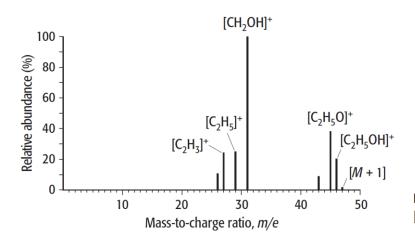
• Carbon-13 NMR spectroscopy:

- Analysis of carbon-13 NMR spectra is similar to that of proton NMR, looking to match different chemical shifts to characteristic molecular environments
- > Signals produced are discrete vertical lines on the spectra (no splitting patterns)
- Heights of the lines are not proportional to the number of equivalent ¹³C atoms present
- > The solvent used to prepare the samples for ¹³C NMR analysis is CDCl₃
- ➢ E.g. propanone (CH₃)₂CO


Figure 29.21 The carbon-13 NMR spectrum of propanone.

E.g. propanone (CH₃)₂CO


Figure 29.22 The carbon-13 NMR spectrum of ethylbenzene.

- Tetramethylsilane, TMS, as the standard for chemical shift measurements at 0 ppm in both proton NMR and ¹³C NMR
- Deuterated solvents, e.g. CDCl3, when obtaining an NMR spectrum as it will not interfere with the spectrum, no peaks produced from the solvent
- Mass spectroscopy:
 - ➤ The peak at the highest mass-to-charge ratio is caused by the molecular ion (M⁺), giving the relative molecular mass of the sample

 Very small peak beyond the molecular ion peak at a mass of [M + 1] caused by the 1.10% carbon-13 present in any organic compound, hence number of carbon atoms (n) in a molecule is given by: $n = \frac{100}{1.1} \times \frac{\text{abundance of } [M + 1]^+ \text{ ion}}{\text{abundance of } M^+ \text{ ion}}$

An unknown compound has a molecular ion peak, M^+ , with a relative abundance of 54.5% and has an $[M + 1]^+$ peak with a relative abundance of 3.6%. How many carbon atoms does the unknown compound contain? Substituting the values of relative abundance into the equation:

$$n = \frac{100}{1.1} \times \frac{\text{abundance of } [M + 1]^+ \text{ ion}}{\text{abundance of } M^+ \text{ ion}}$$

we get:
$$n = \frac{100}{1.1} \times \frac{3.6}{54.5} = 6.0$$

There are **6 carbon atoms** in each molecule.

Figure 29.25 The mass spectrum of ethanol, showing the [M + 1] peak.

A sample containing chlorine or bromine atoms will form [M + 2] peak which is beyond the molecular ion peak, due to their isotopes

Isotopes	Approximate %	
³⁵ Cl	75	
³⁷ Cl	25	
⁷⁹ Br	50	
⁸¹ Br	50	

Table 29.6 Naturally occurring isotopes of chlorineand bromine.

- Imagine a sample of chloromethane, CH₃Cl; molecules of CH₃³⁵Cl (75%) and molecules of CH₃³⁷Cl (25%). The molecular ion will be CH₃³⁵Cl⁺, and two units beyond that on the mass spectrum will be the peak for CH₃³⁷Cl⁺
- The peak for $CH_3^{37}CI^+$ will be one-third the height of the molecular ion the [M + 2] peak
- In the mass spectrum of bromomethane, CH₃Br, we will have two molecular ion peaks of approximately the same height one for CH₃⁷⁹Br⁺ and the other for CH₃⁸¹Br⁺ the [M + 2] peak
 - If the [M + 2] peak is one-third the height of the M peak, this suggests the presence of one chlorine atom per molecule
 - If the [M + 2] peak is the same as the height of the M peak, this suggests the presence of one bromine atom per molecule

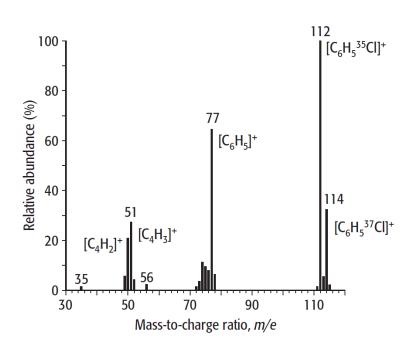


Figure 29.26 The mass spectrum of chlorobenzene, showing the [M + 2] peak. (Note that there are also tiny [M + 1] and [M + 3] peaks corresponding to ¹³C in the molecule.)