MNN. Xiremed Roers. Com

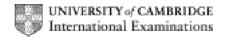
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

0654 CO-ORDINATED SCIENCES

0654/61


Paper 61 (Alternative to Practical), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

.g	IGC	SE – May/June 2010	0654	61
(i)				[2]
(ii)				[2]
hor	contal axis shows lab	el for each bar ;		[3]
(i)	damp and dark ;			[1]
(ii)	dark ; woodlice hide from p OR damp ; prevents desiccation	(of woodlice);		
	(allow damp and darl	k as the condition)		[max 2]
				[Total: 10]
(i)	current / electron flov	v changes direction or polarity	y changes / OWTTE ;	[1]
(ii)			OWTTE ;	[2]
(i)	9.4 cm, 12.4 cm, 15.6	6 ± 1 mm ;;;		[3]
(ii)	0.094, 0.124, 0.156 (e.c.f.);		[1]
(iii)	`	•	distances in the same time	e [1]
e.g.	$\mathbf{g} = \frac{2 \times 0.0156}{(0.18)^2} \; ;$			
	•	ition is shown but value of g is	s between 8.6 and 10.0)	[2]
				[Total: 10]
red	orange (in this order));		[1]
red	orange (in this order));		[1] [1]
	(ii) vertice horize all base (i) (ii) (iii) (iii) (iii) e.g. = 9.6	(i) test B column: 1, 7 test C column: 2, 8 (ii) average column: 1.6 (3 or 4 correct, 2 man vertical axis correctly labe horizontal axis shows lab all bars at correct height; (i) damp and dark; (ii) EITHER dark; woodlice hide from pOR damp; prevents desiccation (allow damp and dark) (ii) current / electron flow damp and dark (iii) current causes a (charalternately attracts and dark (iii) 0.094, 0.124, 0.156 (iii) 0.094, 0.124, 0.156 (iii) (data from Fig. 2.2 us interval are greater of e.g. $\mathbf{g} = \frac{2 \times 0.0156}{(0.18)^2}$; $\mathbf{g} = 9.63$;	test C column: 2, 8, 0, 0; (ii) average column: 1.6, 7.0, 1.0, 0.3;; (3 or 4 correct, 2 marks, 2 correct, 1 mark) vertical axis correctly labelled; horizontal axis shows label for each bar; all bars at correct height; (i) damp and dark; (ii) EITHER dark; woodlice hide from predators; OR damp; prevents desiccation (of woodlice); (allow damp and dark as the condition) (i) current / electron flow changes direction or polarity alternately attracts and repels permanent magnet (ii) 9.4 cm, 12.4 cm, 15.6 ± 1 mm;;; (iii) 0.094, 0.124, 0.156 (e.c.f.); (iiii) (data from Fig. 2.2 used to show that) successive interval are greater OWTTE e.g. g = $\frac{2 \times 0.0156}{(0.18)^2}$; = 9.63;	 (i) test B column: 1, 7, 1, 1; test C column: 2, 8, 0, 0; (ii) average column: 1.6, 7.0, 1.0, 0.3;; (3 or 4 correct, 2 marks, 2 correct, 1 mark) vertical axis correctly labelled; horizontal axis shows label for each bar; all bars at correct height; (i) damp and dark; (ii) EITHER dark; woodlice hide from predators; OR damp; prevents desiccation (of woodlice); (allow damp and dark as the condition) (ii) current / electron flow changes direction or polarity changes / OWTTE; (iii) current causes a (changing) magnetic field; alternately attracts and repels permanent magnet OWTTE; (ii) 9.4 cm, 12.4 cm, 15.6 ± 1 mm;; (iii) 0.094, 0.124, 0.156 (e.c.f.); (iii) (data from Fig. 2.2 used to show that) successive distances in the same time interval are greater OWTTE e.g. g = (2 × 0.0156)/(0.18)²;

Mark Scheme: Teachers' version

Syllabus

Paper

Page 2

	Page 3			Mark Scheme: Teachers' version	Syllabus	Paper		
		<u> </u>		IGCSE – May/June 2010	0654	61		
	(c)	to wash out the pipette and / or beaker (OWTTE);						
	(d)		lithium, sodium, potassium or ammonium hydroxide (ammonia solution) ; (reject calcium hydroxide)					
	(e)	(i) silver chloride / AgC1;						
		(ii)	hydr	rochloric acid / HC <i>l</i> ;		[1]		
	(f)	reference to: equal amounts (lengths) of magnesium ribbon; same reaction temperature; same volume of acid; measure amount of hydrogen given off in given time / rate of bubbling or measure time taken to dissolve magnesium;						
				e points including the last one);		[max 3]		
						[Total: 10]		
4	(a)	(i)		is refracted (bent) at curved surface / beaker (and v TTE ;	vater) act as a lens /	[1]		
		(ii)	= 6.5 (± 1	5 – 12; 5 cm (65 mm) (correctly recorded); mm)	ah awas)	ro1		
			(allo	w correct answer for 2 marks even if no calculation	snown)	[2]		
		(iii) 17.3 – 12 = 5.3 cm (53 mm); (± 1 mm) (award mark either for equation or for result)				[1]		
	(b)	at least 2 points correctly plotted (e.c.f.); straight line drawn passing through (0,0);			[2]			
	(c)	graph shows clearly the vertical and horizontal distances ; calculation to give result (e.c.f. depends on candidate's graph but should be 1.2 \pm 0.1) ;		h but should be	[2]			
	(d)) measure known volume of liquid into (weighed) beaker and weigh to find mass of liquid; divide mass by volume;						
		uivi	u c III	ass by voluitie ,		[2] [Total: 10]		
5	(a)	(i)	sun	leaf 59 mm ;				
•	(4)	(1)	shac	de leaf 72 mm ; w 1 mm tolerance)		[2]		
		(ii)	grea	iter capture of sunlight (for photosynthesis);		[1]		

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2010	0654	61
	. ,	correct c	n three columns and two rows all correctly headed omparison of leaf thickness; omparison of numbers of palisade cells (or 2 layed omparison of size of air spaces;	,	[4]
	` ,	feature	two rows of palisade cells ; ion greater amount of photosynthesis ;		[2]
	(d)	prevents	too much water (vapour) loss due to transpiration	n / evaporation ;	[1] [Total: 10]
6	` .	a named	carbonate (allow marble, limestone) ; acid ; rbonate and an acid' give 1 mark only)		[2]
	(b)	CO ₂ + C	(both correct);		[1]

(c) 1. the bulb lights up;

2. there is a reading on the ammeter (1 and 2 in any order); [2] (no mark for 'a reading on the voltmeter');

(d) (i) 42.3 (no tolerance); [1]

(ii) 43.9 - 35.9 = 8.0 (accept '8') [1]

(iii) 43.9 - 42.3 = 1.6; [1]

(iv) reduction; [1]

(e) carbon monoxide is poisonous / harmful / dangerous ; [1]

[Total: 10]