

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

4 5 6 1 4 4 2 7 4 9

CO-ORDINATED SCIENCES

0654/23

Paper 2 (Core)

May/June 2010

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use				
1				
2				
3				
4				
5				
6				
7				
8				
9				
Total				

This document consists of 23 printed pages and 1 blank page.

1

(a) Complete the diagram in Fig. 1.1 to show the energy transfers in a power station fuelled by a nuclear reactor. nuclear heat electrical [1] Fig. 1.1 (b) Name one nuclear fuel. (c) (i) Coal is a non-renewable energy source. Explain what is meant by the term non-renewable. _____[1] (ii) State one example of a renewable energy source that can be used to generate electricity. (iii) State **one** advantage of a nuclear power station over a coal-burning power station. (d) Explain why electricity is transmitted at high voltage. Your answer should include ideas about current, voltage and energy loss.

© UCLES 2010 0654/23/M/J/10

(e)		of ntium		waste	products	formed	in	nuclear	power	stations	is	the	isoto	pe
		ntiun lear f			ner waste	products	fror	n nuclea	r reacto	rs, has be	en	prod	uced	by
	(i)	State	e wha	it happe	ens to the	nuclei of	aton	ns during	nuclear	fission.				
														[1]
	(ii)	Stro	ntium	-90 ded	cays by be	ta particle	e em	nission. W	/hat is a	beta part	icle	?		
														[1]

	protein			function	
	haemoglobin		bre	aks down starch to maltose	
	insulin		tr	ransports oxygen	
	amylase		redi	uces blood glucose level	
		Fig. 2.1			
) List the	e four elements found in	_			
) List the	e four elements found in	_			
) Two fo	e four elements found in cod samples were test nt. The results are showr	all proteins. ed with iodine so	olution,	Benedict's reagent	 and
) Two fo	ood samples were test	all proteins. ed with iodine so	olution,	Benedict's reagent	 and
) Two fo	ood samples were test	all proteins. ed with iodine so		Benedict's reagent	and
) Two foreager	ood samples were test	all proteins. ed with iodine son in Table 2.1. Table 2.1			and
) Two for reager	ood samples were test nt. The results are showr	all proteins. ed with iodine so in Table 2.1. Table 2.1 food sample	· A	food sample B	and
colou	ood samples were test nt. The results are shown	all proteins. ed with iodine son in Table 2.1. Table 2.1 food sample brown	· A	food sample B blue-black	and

[2]

(d)	When a person eats more protein than can be immediately used in the body, the excess protein is broken down to produce the waste product urea.	Ex
	Name the organ in which urea is produced. [1]	
(e)	Suggest how a nitrogen atom in a molecule of nitrogen gas in the atmosphere could become part of a protein in a plant.	
	[3]	

3 (a) Electrolysis is used in industry to convert the raw material, salt (sodium chloride), into three valuable products.

For Examiner's Use

F41

Two of these products are chlorine and sodium hydroxide solution.

A simplified diagram of the apparatus is shown in Fig. 3.1.

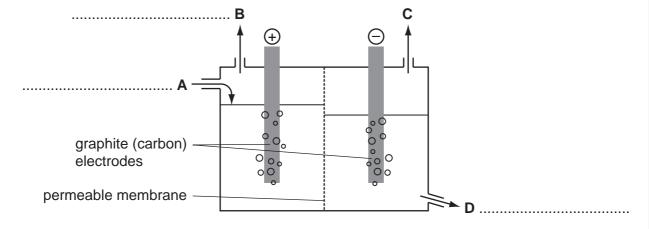


Fig. 3.1

(i) The product which leaves the apparatus at point **C** is a colourless gas which burns with a squeaky pop.

State the name or chemical formula of this gas.

		נין
(ii)	Suggest the names or formulae of the chemicals found at points ${\bf A},{\bf B}$ and ${\bf D}$ Fig. 3.1.) in
	Write your answers on the diagram in Fig. 3.1.	[2]

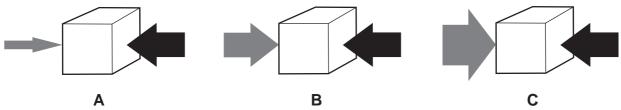
(iii) State **two** properties of graphite (carbon) which make it a suitable material from which to make the electrodes.

[2]

(iv) Describe a safe chemical test for chlorine.

[2]

(b) Sucralose is a compound which is used instead of sucrose (sugar) to sweeten food and drink. Table 3.1 contains information about sucrose and sucralose.


Table 3.1

	chemical formula	kilojoules in 1 gram
sucrose	C ₁₂ H ₂₂ O ₁₁	17
sucralose	C ₁₂ H ₁₉ O ₈ C <i>l</i> ₃	0

(i)	Explain which compound, sucrose or sucralose, is a carbohydrate.
	[1]
(ii)	State the total number of atoms which are combined in one molecule of sucralose.
	[1]
(iii)	Sweeteners containing sucralose are more expensive than sucrose, but one gram tastes much sweeter than one gram of sucrose.
	Suggest why people might prefer to use sweeteners containing sucralose rather than sucrose.
	[2]

4 (a) Fig. 4.1 shows forces acting on three blocks. The size of an arrow indicates the size of the force it represents.

For Examiner's Use

		A	В	С	
			Fig. 4.1		
(i	i)	Which of the blocks woul	d start to move?		
		Explain your answer.			
		blocks			
		explanation			
	į				[2]
(ii		On the blocks in Fig. 4. motion.	1 that move, draw anot	her arrow to show the direction	of [1]
(iii	i)	Name one force which a	cts downwards on all the	e blocks.	
					[1]
(iv	')	State the source of this fo	orce.		
	i				[1]
(b) C)ne	of the blocks has a mass	s of 720 g and a volume	of 80 cm ³ .	
С	alc	ulate the density of the b	lock.		
S	tate	e the formula that you us	e and show your working	g.	
		formula			
		working			
		J			
				2	
				g/cm ³	[2]

(c) A student tested a block to see if it conducted electricity.

For Examiner's Use

Draw a simple circuit which the student could build for this purpose. Use the correct circuit symbols.

[3]

10 (a) Fig. 5.1 shows how light intensity affects the rate of photosynthesis of a plant. 5 rate of photosynthesis light intensity Fig. 5.1 (i) Describe the relationship between light intensity and the rate of photosynthesis. [2] (ii) Explain why light is needed for photosynthesis. [2] (b) The diagrams in Fig. 5.2 show sections through two leaves on the same tree. The two diagrams are drawn to the same scale. leaf A leaf B cuticle palisade cell Q R Fig. 5.2

For Examiner's Use

[3]

0654/23/M/J/10

(i) Name the parts labelled P, Q and R on Fig. 5.2.

P

Q

R _____

© UCLES 2010

	(ii)	Leaf A was taken from a part of the tree that was always in the shade. Leaf B was taken from a part of the tree that received plenty of sunlight.
		Both leaves are put into bright light.
		Using Fig. 5.2, suggest in which leaf photosynthesis will happen faster in these conditions. Explain your answer.
		leaf
		explanation
		[1]
	(iii)	Suggest why leaf B has a thicker cuticle than leaf A .
		[2]
	(iv)	Describe how carbon dioxide travels to a palisade cell in a leaf.
		[3]
(c)	The	differences between leaf A and leaf B are an example of variation.
	Sta	te whether this variation is caused by
	•	genes,
	•	the environment,
	•	both genes and environment together.
	Exp	lain your answer.
	cau	se of variation
		lanation
		[2]

6 (a) Solutions of substances in water are acidic, neutral or alkaline.

For Examiner's Use

Choose pH values from the list below to complete Table 6.1.

list of pH values

2 5 7 9 13

Table 6.1

liquid	description	рН
sodium chloride solution	neutral	
lemonade (a fizzy drink)	weakly acidic	

[2]

(b) A student used the apparatus shown in Fig. 6.1 to investigate the reaction between dilute hydrochloric acid and magnesium.

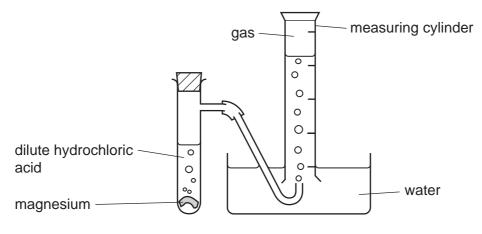


Fig. 6.1

(i) The student made several observations and measurements during her investigation.

Suggest and explain an observation which would show that the reaction between magnesium and dilute hydrochloric acid is *exothermic*.

(0)	

(ii)	State two changes which the student could make to the reaction conditions so that the gas collected more slowly in the measuring cylinder.
	1
	2
	[2]
(iii)	Complete the word equation for the reaction between dilute hydrochloric acid and magnesium.
	ochloric acid + magnesium +
	[2]
(c) Ma	gnesium, Mg, is a metallic element.
(i)	Explain the meaning of both words in the term <i>metallic element</i> .
	metallic
	element
	[2]
(ii)	Name one other element which is in the same group of the Periodic Table as magnesium.
	[1]
(iii)	An atom of magnesium has a nucleon (mass) number of 26.
	Calculate the number of neutrons in this magnesium atom.
	Use the Periodic Table on page 24.
	Show your working.
	F41
	[1]

7 (a) A racing car is being driven in a race.

The graph in Fig. 7.1 shows the speed of the car over a 26 second period.

For Examiner's Use

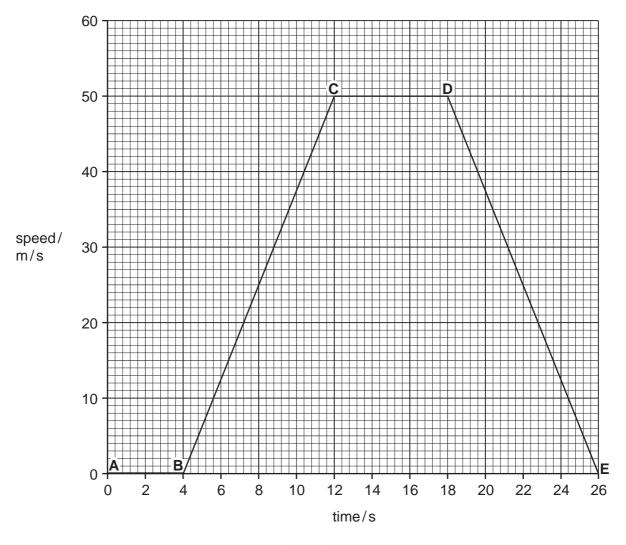


Fig. 7.1

(i)	Between which points on the graph is the car not moving?	
		[1]
(ii)	State the speed of the car between C and D .	

_____m/s

[1]

(iii)	The mass of the car and driver is 600 kg.	
	Calculate the momentum of the car between C and D .	
	State the formula that you use and show your working.	
	formula	
	working	
	kgm/s	[2]
(iv)	Calculate the acceleration of the car between B and C .	
	Show your working.	
	m/s²	[2]

(b) A wheel on a car needs changing. Fig. 7.2 shows a spanner of length 0.3 m being used to turn a wheel nut.

For Examiner's Use

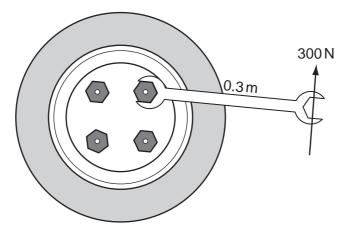


Fig. 7.2

(i) Calculate the turning effect (moment) of the spanner.

State the formula that you use and show your working.

formula

working

			Nm	[2]
	(ii)	Give two ways in which you can increase the spanner's turning effe	ect.	
		1		
		2		[2]
(c)	A ca	ar has been painted blue. Blue is a primary colour of light.		
(-)				
	ivan	ne the two other primary colours of light.		
		and		[1]

BLANK PAGE

Please turn over for Question 8.

8 Sprinters need fast reflexes to make a good start in a 100 m race. They respond to the sound of the starting gun by pushing off from their starting blocks as fast as they can.

For Examiner's Use

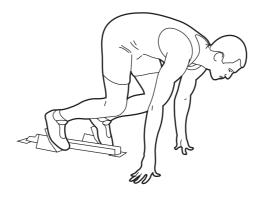


Fig. 8.1

(a) Choose the correct word from the list to identify the stimulus, receptor and effector in this response.

ear	eye	muscle	sprinter	sound	
stimulus					
receptor					
effector					[3]

(b) The time between the starting gun being fired and the runner pushing off from the starting blocks is known as the reaction time.

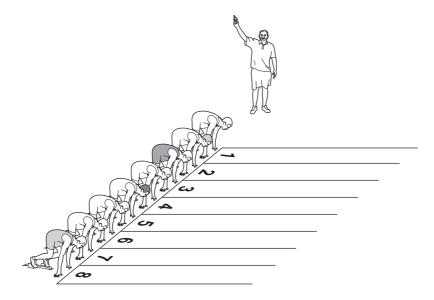


Fig. 8.2

The reaction time is made up of:

- the time taken for the sound from the starting gun to reach the runner's ear,
- plus the time taken for a nerve impulse to pass from the ear to the brain,
- plus the time taken for a nerve impulse to pass from the brain to the leg muscles.

(i)	(i) A runner in lane 1 is 2 m from the starting gun. Sound travels at 330 m/s.									
	Calculate the time taken for the sound to reach the runner's ear.									
	Show your working.									
									S	[2]
									3	[4]
			he reaction		of the rur	nners in I	ane 1 an	d lane 8	in the he	ats
				Та	ble 8.1					
					reaction	n time/s				
		heat 1	heat 2	heat 3	heat 4	heat 5	heat 6	heat 7	heat 8	
la	ne 1	0.133	0.146	0.170	0.160	0.186	0.176	0.149	0.147	
la	ne 8	0.228	0.223	0.188	0.195	0.178	0.199	0.163	0.167	
(ii)	Draw	a ring ar	ound the	heat that	shows an	omalous	results.			[1]
(iii)	In wh	nich lane	did the ru	nners hav	e the long	ger reaction	on times?	Suggest	a reason	for
	lane									
	reason									
	[1]									

c)	Dur	ring a sprint race, a runner's muscle cells use anaerobic respiration.						
	(i)	Explain what is meant by anaerobic respiration.						
		[2]						
(ii)	Name the waste substance that is made when anaerobic respiration takes place in human cells.						
		[1]						
(i	ii)	Describe how the body gets rid of this waste substance after the race is over.						
		[2]						

© UCLES 2010 0654/23/M/J/10

9 Fig. 9.1 shows part of the water cycle.

P shows where liquid water is evaporating into water vapour which rises and then condenses back into drops of liquid water in clouds.

Q shows where rain is falling. The rainwater collects in streams and rivers which flow over rocks in the Earth's crust.

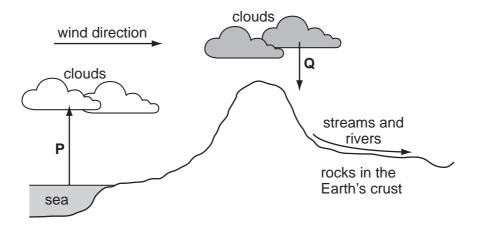


Fig. 9.1

	3
(a)	State briefly what happens to the rising water vapour, ${\bf P}$, in Fig. 9.1 which causes it to condense.
	[1]
(b)	Water molecules contain the elements hydrogen and oxygen.
	A student thinks that the oxygen in water should relight a glowing wooden splint.
	Explain why a glowing wooden splint does not relight when placed into a test-tube full of water vapour.
	[2]

(c) The rocks in the Earth's crust undergo weathering and erosion which are imp processes in the formation of clay.							
	(i)	State what must be done to objects made of clay to change them into rigid ceramic objects such as dinner plates.					
		[1]					
	(ii)	Carbon is a non-metallic element.					
		Explain why rainwater which contains dissolved carbon dioxide causes chemical weathering of limestone rocks.					
		[3]					

(d) Fig. 9.2 shows a simplified diagram of a machine used to wash dishes.

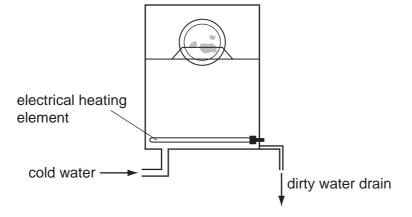


Fig. 9.2

In this machine the water, which is to be used to clean the dishes is first heated to a high temperature and then a detergent is added.

(i)	Describe one disadvantage of using hard water rather than soft water in t machine.	this
		 [1]
(ii)	Name a metallic element whose compounds cause hardness in water.	
		[1]
iii)	Explain briefly the advantage of adding a detergent to the water in the machine.	
		[1]

DATA SHEET
The Periodic Table of the Elements

	0	Heirum 2	20 Neon 10 40 Argon	84 Krypton 36 Krypton 131	X Xenon 24	Radon 86	_	175 Lu Lutetium 71	Lr Lawrencium 103
	II/		19 Fluorine 9 35.5 C 1 Chlorine	80 Br Bromine 35 127	I lodine 53	Astatine 85		Yb Ytterbium 70	Nobelium
	IN		16 Oxygen 8 32 S Sulfur 16	Selenium 34	Tellurium 52	Polonium 84		169 Tm Thulium 69	Md Mendelevium 101
	>		14 Nitrogen 7 31 Phosphorus 15	75 AS Arsenic 33	Sb Antimony 51 209	Bismuth 83		167 Er Erbium 68	Fm Fermium 100
	2		12 Carbon 6 Si Si	Ge Gemanium 32	50 Tin 207	Lead 82		165 Ho Holmium 67	ES Einsteinium 99
	=		11 B Boron 5 7 A1 Aluminium 13	70 Ga Gallium 31 115	Indium 49 204	Thallium		162 Dy Dysprosium 66	Californium
				65 Zn Zinc 30 112	Cadmium 48 201	Mercury 80		159 Tb Terbium 65	BK Berkelium 97
				Copper 29 108	Ag Silver 197	Bloop 67		157 Gd Gadolinium 64	Cm Curium
Group				59 Nickel 28 106	Pd Palladium 46 195	Platinum 78		152 Eu Europium 63	Am Ameridum 95
Gre				59 Cobalt 27 T03	Rhodium 45 192	Iridium 77		Sm Samarium 62	Pu Plutonium 94
		T Hydrogen		56 Fe Iron 26 101	Ruthenium 44 190	Osmium 76		Pm Promethium 61	Np Neptunium 93
				Mn Manganese 25	Tc Technetium 43 186	Rhenium 75		Neodymium 60	238 U Uranium 92
				52 Cr Chromium 24	Molybdenum 42 184	Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91
				51 V Vanadium 23	Niobium 41 181	Tantalum 73		140 Ce Cerium	232 Th Thorium
				48 Titanium 22	Zirconium 40 178	72			nic mass bol nic) number
				Sc Scandium 21	39 Yttrium 39 139	Lanthanum 57 *	Actinium Act	l series eries	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Beryllium 4 24 Magnesium 12	Cal Calcium 20 88	Strontium 38	Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series	« × □
	_		Lithium 3 23 23 Na Sodium 11	39 Potassium 19 85	Rubidium 37	Caesium 55	Francium 87	*58-71 L; 190-103 /	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.