

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

2 2 2 2 8 8 5 3

CO-ORDINATED SCIENCES

0654/31

Paper 3 (Extended)

May/June 2010

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use					
1					
2					
3					
4					
5					
6					
7					
8					
9					
Total					

This document consists of 23 printed pages and 1 blank page.

1 Fig. 1.1 shows a section through a human heart.

For Examiner's Use

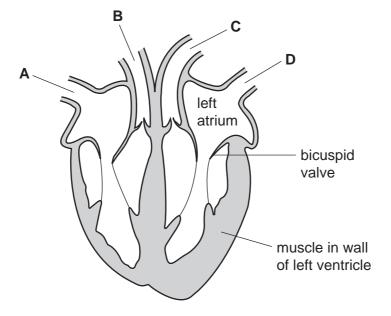


Fig. 1.1

(a)	(i)	Which two of the blood vessels A , B , C and D contain oxygenated blood?	
		and	[1]
	(ii)	Which two of the blood vessels A , B , C and D are veins?	
		and	[1]
((iii)	Describe what happens to the bicuspid valve during one heartbeat.	
			[2]

(b)	In an adult, blood is oxygenated in the lungs	s. In a fetus	, the lungs of	do not work and its
	blood is oxygenated in the placenta.			

- The blood of the fetus is carried to the placenta in the umbilical artery, which comes from the left ventricle of its heart.
- The blood of the fetus is returned to its heart from the placenta in the umbilical vein, which carries it to the right atrium.

		explain how this system will affect the oxygen content of the blood in the right side of the heart in a fetus, compared with an adult.								
	•••••	[2]								
(c)	Red	blood cells contain a pigment (coloured substance) that transports oxygen.								
	(i)	Name this pigment. [1]								
	(ii)	What type of substance is this pigment? [1]								
	(iii)	Name the inorganic ion (mineral) that is needed in the diet to enable the body to make this pigment.								
		[1]								
	(iv)	Most nutrients in the food we eat need to be digested. Explain why inorganic ions do not need to be digested.								
		[2]								
	(v)	Explain why body cells need oxygen.								
		[2]								

2	(a)		climber is exposed to ultraviolet radiation from the Sun. He knows that ultraviolet iation is harmful.
		(i)	State how ultraviolet radiation is harmful to humans.
			[1]
		(ii)	Describe one way in which the climber could protect himself from the ultraviolet radiation.
			[1]
	(b)		e climber makes a loud noise. The echo from a mountain 300 m away reaches him econds later.
			The state of the s
			mountain
			300 m →
			climber making loud noise
			Fig. 2.1
		Cal	culate the speed of sound in air using these results.
		Sta	te the formula that you use and show your working.
			formula
			working
			working
			[2]

(c)	The	an be dangerous to make loud noises when there is melting snow on mountains. weight of the snow makes the snow slide down the mountain and become an lanche.	For Examiner's Use
	The	e mass of snow in an avalanche is 400 000 kg and it is travelling at 60 m/s.	
	Cal	culate the momentum of the avalanche.	
	Sta	te the formula that you use and show your working.	
		formula	
		working	
		[2]	
(d)		e climber uses a torch at night. His torch contains four cells, a switch and a lamp all nected in series.	
	(i)	Draw a circuit diagram for this circuit using the correct symbols.	
		[2]	
	(ii)	The potential difference across each of the cells in the circuit is 1.5 V.	
		State the total potential difference across the four cells connected in series.	
		[1]	

(e)	The climber carries a nylon tent. As he walks, the tent rubs against his clothing. The fabric gains a negative static charge.
	Explain how this happens.
	[3]
(f)	The climber is able to start a fire by focusing rays of sunlight onto some dried twigs and grass, using a lens (magnifying glass).
	On Fig. 2.2, draw two rays of light from the Sun entering the lens and being brought to a focus.
	Sun
	lens
	twigs/grass
	Fig. 2.2 [3]

3	(a)	A person swallows a radioactive substance.	For Examiner's
		Explain why this could be harmful.	Use
		[3]	
	(b)	In a nuclear power station, nuclear fuel such as uranium gives out energy.	
		(i) State what happens to the uranium atoms.	
		[1]	
		(ii) Describe one problem associated with this process.	
		[2]	

4 A student used the apparatus shown in Fig. 4.1 to investigate the reaction between a solution of an acid **A** and 20.0 cm³ of a solution of the alkali, potassium hydroxide.

For Examiner's Use

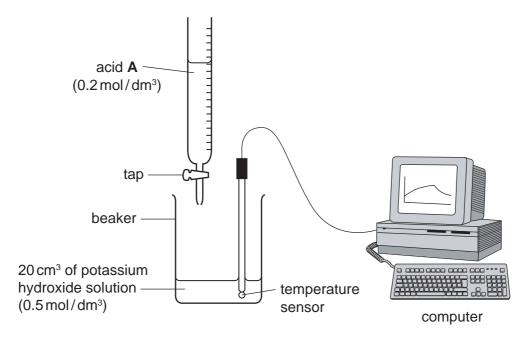


Fig. 4.1

Fig. 4.2 shows how the temperature of the mixture changed as the acid was added to the alkali in the beaker.

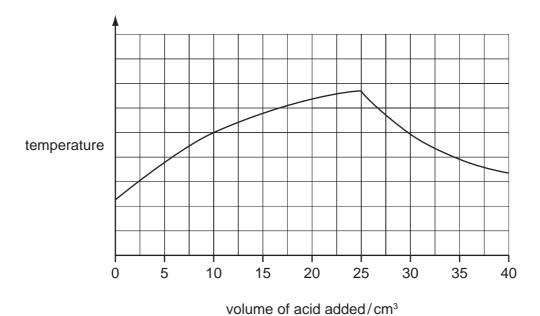


Fig. 4.2

(a)	(i)	State why the temperature of the mixture increased when the acid was first added to the alkali.	For Examiner's Use
		[1]	
	(ii)	Explain how the information in Fig. 4.2 shows that it took 25.0 cm³ of the acid to neutralise 20.0 cm³ of the potassium hydroxide solution.	
		[2]	
(b)		he experiment, the concentrations of acid $\bf A$ and the potassium hydroxide solution ${\bf re}$ 0.2 mol/dm ³ and 0.5 mol/dm ³ respectively.	
	(i)	Use the equation	
		moles (dissolved) = volume (dm^3) x concentration (mol/dm^3)	
		to calculate the number of moles of both acid ${\bf A}$ and potassium hydroxide which neutralised each other in this reaction.	
		moles of acid A	
		moles of potassium hydroxide	
		[2]	
	(ii)	State the number of moles of acid A which would be needed to neutralise one mole of potassium hydroxide.	
		Explain your answer briefly.	
		moles of acid A	
		explanation	
		[1]	
	(iii)	Write the ionic chemical equation which represents what happens when an aqueous acid reacts with aqueous alkali.	
		[2]	

(c) In the year 1807, metallic potassium was obtained from potassium hydroxide. Fig. 4.3 shows a simplified diagram of the apparatus that was used.

For Examiner's Use

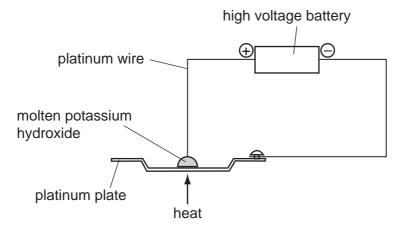


Fig. 4.3

Bubbles of gas were seen where the platinum wire touched the top of the potassium hydroxide. Shiny beads of molten potassium were seen where the potassium hydroxide rested on the platinum plate.

(i)	Name the process shown in Fig. 4.3.
	[1]
(ii)	Explain why the potassium metal formed where the potassium hydroxide touched the platinum plate.
	Your answer should include the ideas of electrical charge, atoms, ions and electrons.
	[3]

5 (a) Many houses are built with cavity walls with a gap between the outside wall and the inside wall. This gap is often filled with insulating board made of foam between two shiny metal foil surfaces.

For Examiner's Use

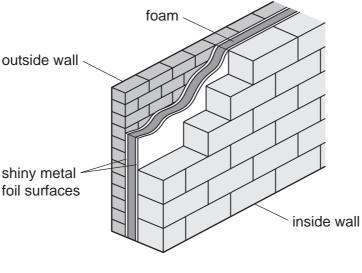


Fig. 5.1

The cavity wall insulation helps to reduce heat transfer, through the wall.

[3]			conduc uce he		ction	and	radiation	to	explain	how	cavity	wall
[3]												
[3]												
[3]												
	 	 		 								[3]

(b) Transformers are used to change the voltage of an a.c. supply. Fig. 5.2 shows a shaver unit, which contains a transformer, of the type found in many European homes.

For Examiner's Use

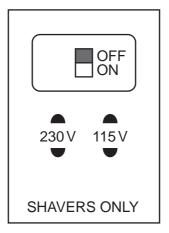


Fig. 5.2

The shaver unit has two sockets, one for shavers working at 115 V, the other for shavers working at 230 V. Fig. 5.3 shows how the sockets are wired to the output/secondary coils of a transformer.

Fig. 5.3

(i)	Use Fig. 5.	3 to explain	which coil,	A or B ,	gives an	output of	f 115 V.
-----	-------------	--------------	-------------	------------------------	----------	-----------	----------

coil	
explanation	
	[1]

(ii) The transformer in a shaver unit is known as an isolating transformer and is designed to make the electrical appliance plugged into it safer to use in a bathroom.

Explain why it is dangerous to use electrical appliances in bathrooms unless they have such safety protection.

(c) Fig. 5.4 shows an electromagnet being used in a door lock.

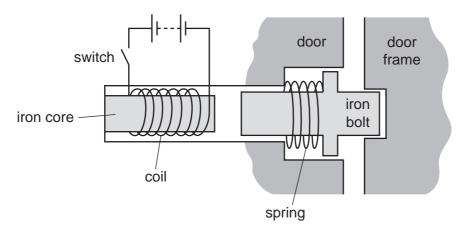


Fig. 5.4

	1 ig. 5.4	
(i)	When the switch is pressed, the iron bolt moves to the left.	
	Explain why this happens.	
		[3]
(ii)	Would this door lock work if the bolt was made of aluminium?	
()	Explain your answer.	
		[1]
/:::\	The electrical connections to the sail ways assidentally reversed	Γ.1
(iii)	The electrical connections to the coil were accidentally reversed.	
	Would the door lock with the iron bolt still work?	
	Explain your answer.	
		[1]
(iv)	Suggest how the strength of the electromagnet could be increased.	
		[1]

6 An experiment was carried out in Sweden into the effects of different types of fertiliser on the crop yield. The experiment lasted 32 years, from 1958 to 1990.

For Examiner's Use

The land was divided into four plots. Three plots were treated with different fertilisers. The fourth plot had no fertiliser added.

Plot **A** manure (cattle droppings and straw)

Plot **B** manure sprayed with a liquid containing bacteria that act as

decomposers

Plot C NPK fertiliser (a mix of inorganic ions containing nitrogen, phosphorus

and potassium)

Plot **D** no fertiliser added

Table 6.1 shows some of the results of the experiment.

Table 6.1

nlot	treatment	mean yield per hect	are per year/tonnes
plot	treatment	wheat	potatoes
A manure		2.98	35.5
В	manure + bacteria	3.27	46.7
С	NPK fertiliser	3.28	36.2
D	no fertiliser	2.49	28.7

(a)	(i)	The inorganic fertiliser may contain nitrate ions, NO ₃ .
		Give the name or formula of one other ion containing nitrogen that could be found in the inorganic fertiliser.
		[1]
	(ii)	Explain why wheat given NPK fertiliser gave a higher yield than wheat given no fertiliser.

(iii)		the results from using manure + bacteria (plot B) with the results from a fertiliser (plot C), for both wheat and potatoes.	n
		wheat		
		potatoes		
			[3]
(iv)		ir knowledge of the nitrogen cycle, suggest why the yield of potatoes of greater than the yield on plot ${f A}$.	n
			[2]
(b)	Lea	ching of fer	rtilisers from the soil may cause pollution of nearby waterways.	
			the leaching of fertiliser into a river can cause the concentration of the same of the concentration of the	of
	•••••			
				•••
			[3]

7 Polymer molecules exist in both natural substances and in materials which have been made in industry.

⊢or
Examiner's
HSP

(a) Starch, cellulose and protein are all natural substances made of polymer molecules.

(i)	State the	name o	of the	monomer	which	forms	starch
-----	-----------	--------	--------	---------	-------	-------	--------

[1	1
 -	-

(ii) A sample of one of the natural substances was burned in pure oxygen. The mixture of gases which was formed was analysed and found to contain carbon dioxide, water vapour, nitrogen dioxide and sulfur dioxide.

Which one of the three natural substances had been burned?

Explain your answer.	
	[3]

- **(b)** Nylon and melamine resin are polymers produced industrially. Nylon is a **thermoplastic** and melamine resin is a **thermoset**.
 - (i) Nylon is often formed into fibres which are used to make clothing, rope and guitar strings. Fig. 7.1 shows a simplified diagram of an industrial process which is used to produce nylon fibres.

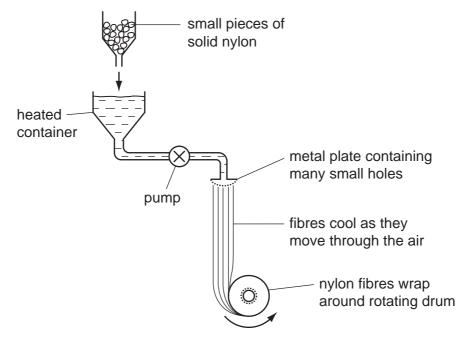


Fig. 7.1

Explain, in terms of the forces between molecules, why it is possible to form nylon fibres from solid nylon using the process in Fig. 7.1.
[3]
Melamine resin is made into flat sheets for use as working surfaces in kitchens, where hot saucepans may come into contact with the surface.
working surface made from melamine resin
Explain, in terms of molecules, why melamine resin is a suitable material for working surfaces.
[2]

(ii)

8 Fig. 8.1 shows a section through a human eye.

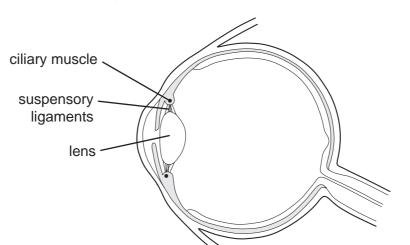


Fig. 8.1

- (a) On Fig. 8.1, use the letters and label lines to label each of these parts of the eye.
 - A the part that contains rods and cones
 - **B** the part that transmits nerve impulses to the brain
 - **C** the part that controls the amount of light that enters the eye

D)	a nearby object.
	[3]

© UCLES 2010 0654/31/M/J/10

For Examiner's Use

[3]

(c)	Eye colour is determined by genes, and is inherited. There are many different alleles for eye colour.
	Some genes have alleles that cause disease. Give one example of an inherited disease, and describe how it can be passed from parents to offspring.
	name of disease
	how it is passed on
	[3]

9

(a)		e grid in Fig. 9.1 shows the arrangement of the first twenty elements in the Periodic ole.					
		w					
	Fig. 9.1 For each of the elements described below, write the letter for each element in the correct box in Fig. 9.1. The first one has been done as an example.						
		Element W is made of the lightest atoms.					
	Element X is in Period 3 and atoms of X have 2 outer electrons.						
		Element Y is the most reactive in Group 7 (Group VII).					
	Element Z is made of atoms which have 10 protons in their nuclei.						
		[3]					
(b)	Ме	tals have giant structures and are good conductors of electricity.					
(i) Complete and label the diagram of the structure of a typical metal. Your diag should show how the atoms are arranged.							
		[1]					
	(ii) Use your diagram to explain why metals are good conductors of electricity.						
			••				
		[2]					

(c) Welding is a process used to join pieces of metal together. Fig. 9.2 shows a simplified diagram of a method known as metal inert gas (MIG) welding. The metal wire and the pieces of metal to be joined are heated electrically, and melt together. When the molten metal cools, the pieces are permanently joined.

For Examiner's Use

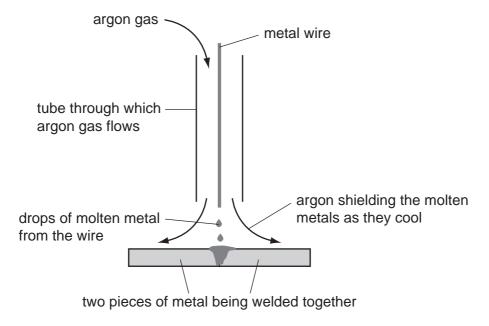


Fig. 9.2

arranged.

(i)	Argon is often used in MIG welding as shown in Fig. 9.2.
	Suggest a chemical reaction which is being prevented by the presence of argon.
	[2]
ii)	Draw a diagram of one atom of argon showing how all of its electrons are

[2]

(iii)	Explain, in terms of their electron arrangement, why argon atoms do not react with the hot metals in MIG welding.
	[2]

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

Group	0	4 He Helium	Neon 10 Neon 10 Argon 18	84 Kr Krypton 36	131 Xe Xeron Xeron 54	Rn Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103
	II/		19 Fluorine 9 35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		Yb Ytterbium 70	Nobelium
	N		16 Oxygen 8 32 S Sulfur	Selenium	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium	Md Mendelevium 101
	>		14 Nitrogen 7 31 9 Phosphorus 15	75 As Arsenic	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium
	>		12 Carbon 6 Silicon 14	73 Ge Germanium	119 Sn Tin	207 Pb Lead 82		165 Ho Holmium 67	ES Einsteinium 99
	≡		11 B 80 con 5 77 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T 1 Thallium		162 Dy Dysprosium 66	Californium
				65 Zn Zinc 30	Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97
				64 Cu Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Cm Curium 96
				59 Ni Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
				59 Co Cobalt 27	103 Rh Rhodium 45	192 I r Iridium 77		Sm Samarium 62	Pu Plutonium
		1 Hydrogen		56 Fe Iron	Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium 93
				55 Wn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 U Uranium
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91
				51 V Vanadium 23	Niobium 41	181 Ta Tantalum 73		140 Ce Cerium	232 Th Thorium
				48 Ti Titanium 22	91 Zr Zirconium 40	178 Hafnium * 72			nic mass ibol nic) number
				45 Scandium 21	89 Y Yttrium 39	139 La Lanthanum 57 **	Actinium Actinium 89	d series series	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Be Berylium 4 24 Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series	« × ∞
	_		7 Lithium 3 23 Na Sodium 11	39 K Potassium	Rb Rubidium	133 Cs Caesium 55	Fr Francium 87	*58-71 L	Key b

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.