

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

8 1 9 6 0 6 8 2 6 1

CO-ORDINATED SCIENCES

0654/51

Paper 5 Practical Test

May/June 2010

2 hours

Candidates answer on the Question Paper.

Additional Materials:

As listed in Instructions to Supervisors

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

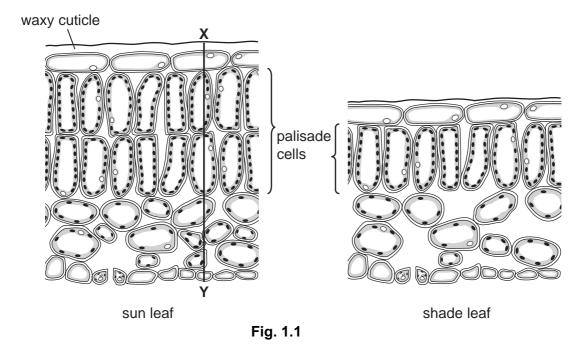
Chemistry practical notes for this paper are printed on page 12.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
Total		

This document consists of 11 printed pages and 1 blank page.


BLANK PAGE

For

		iants snow difference in a shaded area (s		• • • • • • • • • • • • • • • • • • • •	· 1	For Examiner's Use
(a)	(i)	You are supplied shade leaf.	with two leaves, I	abelled sun leaf and another	leaf labelled	
		Make drawings of size.	the two leaves in the	ne spaces provided to show the	difference in	
		sun leaf		shade leaf	ro.	
		sun leaf		shade leaf	[2]	
	lenç	sun leaf gth of sun leaf =	mm	shade leaf length of shaded leaf =		
	len	gth of sun leaf = Measure the maxi		length of shaded leaf = h leaf on your drawing, excludir	mmm [2]	
(b)	(ii)	gth of sun leaf = Measure the maxi	mum length of eacl measurements belo	length of shaded leaf = h leaf on your drawing, excludir ow each diagram.	mmm [2]	
(b)	(ii) One	gth of sun leaf = Measure the maxi (stalk). Write your	mum length of each measurements belou	length of shaded leaf = h leaf on your drawing, excludin ow each diagram. e other.	mmm [2]	
(b)	(ii) One	gth of sun leaf = Measure the maxi (stalk). Write your e leaf has a larger s	mum length of each measurements belou	length of shaded leaf = h leaf on your drawing, excludin ow each diagram. e other.	mmm [2]	
(b)	(ii) One	gth of sun leaf = Measure the maxi (stalk). Write your e leaf has a larger s	mum length of each measurements below urface area than the to the leaf with the	length of shaded leaf =h leaf on your drawing, excluding each diagram. e other. larger surface.	mm [2] ng the petiole	
(b)	(ii) One	gth of sun leaf = Measure the maxi (stalk). Write your e leaf has a larger s	mum length of each measurements below urface area than the to the leaf with the	length of shaded leaf =h leaf on your drawing, excluding each diagram. e other. larger surface.	mm [2] ng the petiole	

(c) Fig. 1.1 shows cross sections of a sun leaf and a shade leaf as viewed using a microscope.

For Examiner's Use

(i) Construct a table to compare the two diagrams shown in Fig. 1.1. Include the following features; thickness of leaf, number of palisade cells, size of air spaces.

[4]

(ii)	Study the differences, shown in Fig.1.1 between the sun leaf and the shade leaf.
	Choose one difference and explain how this difference affects the rate of photosynthesis, in the leaves.
	difference
	explanation
	[2]
(iii)	The sun leaf usually has a thicker cuticle than the shade leaf. The cuticle is a waxy layer covering the leaf.
	Suggest an advantage that this thicker cuticle gives to the sun leaf.
	[1]
(d) (i)	You are going to calculate the magnification of the leaf section in Fig. 1.1.
	Measure the length of the line in XY in Fig. 1.1.
	Measure the length of the line in XY in Fig. 1.1. length = mm [1]
(ii)	
(ii)	length = mm [1]
(ii)	$length = \underline{\qquad} mm \qquad [1]$ The real length of the line XY is 0.2 mm. Use this fact and your answer to d(i) to calculate the magnification of the leaf in
(ii)	$length = \underline{\qquad} mm \qquad [1]$ The real length of the line XY is 0.2 mm. Use this fact and your answer to d(i) to calculate the magnification of the leaf in
(ii)	$length = \underline{\qquad} mm \qquad [1]$ The real length of the line XY is 0.2 mm. Use this fact and your answer to d(i) to calculate the magnification of the leaf in
(ii)	$length = \underline{\qquad} mm \qquad [1]$ The real length of the line XY is 0.2 mm. Use this fact and your answer to d(i) to calculate the magnification of the leaf in

2 You are going to make some measurements on a test-tube before using it to determine the density of **liquid P**.

For Examiner's Use

(a) Measure and record the length, *I*, and the internal diameter, **D**, of the test-tube.

$$l =$$
 mm $D =$ mm

Using these measurements, calculate the volume of the tube using the formula

$$\pi \times \left(\frac{\mathbf{D}}{2}\right)^2 \times l$$

(b) (i) Hold the test-tube in the glass beaker labelled water and add dry sand to the tube until it floats with its open end about 10 mm above the surface. Place a rule in the water beside the tube and measure the depth, d₁ from the water surface to the bottom of the test-tube. See Fig. 2.1. You may need to hold the tube upright to do this.

Record this value, d_1 in Table 2.2 on page 7.

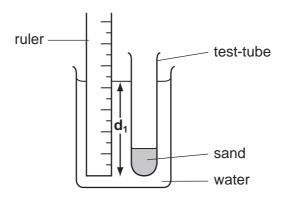


Fig. 2.1

(ii) Remove the test-tube from the water and wipe the outside, taking care not to lose any sand. Do not let water splash into the test-tube. Place the test-tube in the beaker labelled **liquid P** and as before, measure the depth, d_2 .

Record this value, d_2 in the first line of Table 2.2.

(iii) Remove the test-tube and wipe the outside. Empty out a small amount of sand so that it floats in the water with the open end about 12 or 13 mm above the surface.

Measure and record \mathbf{d}_1 , the new depth in Table 2.2.

As before, wipe the outside of the test-tube and transfer it to the **liquid P**.

For Examiner's Use

Measure and record the new depth d_2 in Table 2.2.

(iv) Repeat the process with the tube floating about 2 or 3 mm higher in water each time, until you have five sets of readings of d_1 and d_2 .

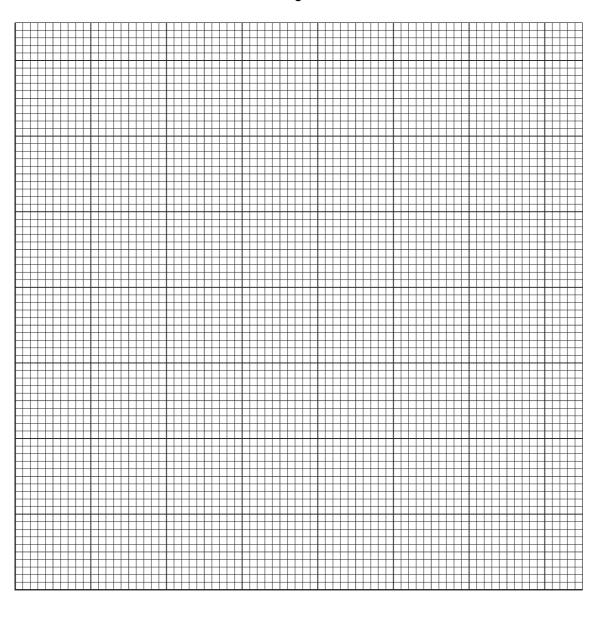

Record all your values in Table 2.2.

Table 2.2

d₁in water/mm	d₂in liquid P/mm

[3]

(c) On the grid provided on page 8 (Fig. 2.2), plot a graph of d₁ (vertical axis) against d₂.Draw the best straight line through your points.

[4]

Fig. 2.2

(d) Calculate the gradient of the line, indicating on your graph the values chosen to enable you to do this. The gradient is numerically equal to the density of **liquid P** in grams per cubic centimetre.

gradient of line = [3]

(e)	Describe another method for finding the density of liquid P using a pipette or burette, a balance and a suitable container. You do not have to carry out the experiment.
	[2]

3	solu	X , Y and Z are solutions of the same acid but different concentrations. You will use alkali, solution A , to find which of the acid solutions is the most concentrated. You will also carry but tests to identify the acid.				
	(a)		ng the droppingle drop of liqui		no other apparatus	, estimate the volume of a
				V	volume of 1 drop =	cm ³ [1]
	(b)	(i)	2 drops of the	e indicator. Use the drop	ping pipette to add	ution X in a test-tube. Add d the alkali, A , a drop at a dition, until a pink colour is
			Record the nu	ımber of drops in Table 3	3.1.	
		(ii)	Repeat the pr	ocedure using solution,	Y , and then Z .	
			Record the nu	ımber of drops in Table 3	3.1.	
				Tabl	e 3.1	
				solution	number of drop	os
				x		
				Y		
				z		
						 [3]
	(c)	Wh	ich of the solut	ions is the most concent	rated? Explain you	r answer.
						[1]
	(d)			of solution X in a test-tu owing splint and a lighted		magnesium. Test any gas
		Red	cord your obse	vation and name the ga	s given off.	
		glov	wing splint			
		ligh	ted splint			
		nan	ne of the gas			[3]

(e)	Place about 2 cm nitrate.	3 of solution X in a test-tube and add a few drops of aqueous silver	-
	Record your obse	rvation and name the acid in solution X .	
	observation		
	name of the acid	[2]
(f)		of solution ${\bf A}$ in a test-tube. Add a little solid ammonium chloride and the gas with litmus paper.	
	Record your obse	rvation and name the gas.	
	observation		
	name of the gas	[2]
(g)		ent experiment using magnesium ribbon to enable you to find out solutions X , Y and Z is the most concentrated. You do not have to riment.	
			•
			•
			•
		[3]

CHEMISTRY PRACTICAL NOTES

Test for anions

anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (C <i>l</i> ·) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
nitrate (NO ₃ -) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulfate (SO ₄ ²⁻) [in solution]	acidify then add aqueous barium chloride <i>or</i> aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
ammonium (NH ₄ ⁺)	ammonia produced on warming	-
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Test for gases

gas	test and test results	
ammonia (NH ₃)	turns damp red litmus paper blue	
carbon dioxide (CO ₂)	turns limewater milky	
chlorine (Cl ₂)	bleaches damp litmus paper	
hydrogen (H ₂)	"pops" with a lighted splint	
oxygen (O ₂)	relights a glowing splint	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.