CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER

CO-ORDINATED SCIENCES

0654/22
Paper 2 (Core)
October/November 2010
2 hours
Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs, tables or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
A copy of the Periodic Table is printed on page 24.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

This document consists of $\mathbf{2 3}$ printed pages and $\mathbf{1}$ blank page.

1 Fig. 1.1 shows the horizontal forces acting on a moving car.

Fig. 1.1
(a) Compare the sizes of the two forces when the car is
(i) decelerating (slowing down),
\qquad
(ii) travelling at a constant speed.
\qquad
(b) Fig. 1.2 shows the speed-time graph for the car for the first 24 seconds of a journey.

Fig. 1.2
(i) On the graph, label with an \mathbf{A}, a section when the car is accelerating.
(ii) State the maximum speed of the car. \qquad $\mathrm{m} / \mathrm{s} \quad[1]$
(iii) The mass of the car is 800 kg .

Use your answer to (ii) to calculate the kinetic energy of the car when travelling at its maximum speed.

State the formula that you use and show your working.
formula used
working
(c) A car headlamp has a power rating of 50 W .
(i) State how many joules of energy will be converted every second in the headlamp.
(ii) Use the formula

$$
\text { power }=\text { voltage } \times \text { current }
$$

to calculate the current in the headlamp when the voltage across it is 12 V .
Show your working.

2 (a) Mammals are vertebrates. State two characteristic visible features of mammals that distinguish them from all other classes of vertebrates.

1

2
(b) Mammals are able to maintain a constant internal body temperature and regulate their blood glucose concentration.
(i) State the term used to describe the maintenance of a constant internal environment.
(ii) Name the process that generates heat inside body cells when the internal body temperature falls too low.
(iii) Describe how blood glucose concentration is brought back to normal if it rises too high.
\qquad
\qquad
\qquad
\qquad
(c) Mammals excrete a nitrogenous waste product called urea.
(i) Name the organ in which urea is formed.
(ii) Name the substances from which urea is made.
\qquad
(iii) Name the organs that excrete urea from the body.

3 (a) Fig. 3.1 shows some of the apparatus used in the electrolysis of copper chloride solution.

Fig. 3.1
(i) What is missing from position \mathbf{Z} in Fig. 3.1?
\qquad
(ii) Name the gas which collects in the test-tube, and explain whether electrode \mathbf{X} is the anode or the cathode.
gas \qquad
Electrode \mathbf{X} is the \qquad because
\qquad
\qquad
(iii) Describe what is observed at electrode \mathbf{Y}.
\qquad
\qquad
(b) The apparatus shown in Fig. 3.2 can be used to find out what is formed when lead oxide reacts with carbon.

Fig. 3.2
When the mixture is heated, molten metal is formed in the container and a gas is given off which turns the drop of limewater cloudy.
(i) Complete the word equation for the reaction between lead oxide and carbon.

(ii) State one substance, shown in the equation in (i), which is a compound.

Explain why this substance is described as a compound and not as an element. substance \qquad
\qquad
\qquad
\qquad
(c) (i) The main chemical compound in most types of glass is obtained from sand. Name this compound. \qquad
(ii) Name and explain briefly which of the metal oxides below would need to be mixed with sand in order to obtain coloured glass.
copper oxide lead oxide sodium oxide
name
explanation

4 (a) Alpha, beta and gamma radiations have different properties.
Draw one line from each type of radiation below to link it to its correct property.
radiation

properties
partly stopped by 2 cm lead
no charge
stopped by 2 cm of lead negative charge

stopped by 5 cm of air positive charge
(b) A scientist uses a Geiger counter to measure the radiation of a radioactive source.
(i) State one safety precaution she should take when doing this experiment.

Fig. 4.1 shows the graph of her results.

Fig. 4.1
(ii) State the reading on the Geiger counter,
at the start of the experiment, \qquad
after 5 hours. \qquad
(iii) State the half-life of the radioactive source. hours [1]
(c) Alpha radiation is a form of ionising radiation.
(i) Explain the meaning of the term ionising radiation.
\qquad
\qquad
(ii) An alpha radiation source is less harmful to humans than a gamma radiation source if it is outside the body.

An alpha radiation source is more harmful to humans than a gamma radiation source if it is inside the body.

Explain why.
\qquad
\qquad
\qquad
(d) Nuclear fission and nuclear fusion are both sources of energy.

Describe how these processes differ.
\qquad
\qquad
\qquad

BLANK PAGE

[^0]5 Fig. 5.1 shows some stages in the formation of a human fetus.

Fig. 5.1
(a) Most human cells contain 46 chromosomes.
(i) State the number of chromosomes in a sperm cell. ... [
(ii) State the number of chromosomes in a zygote.
(iii) Name the part of the cell in which chromosomes are found.
(b) Describe how fertilisation takes place in the oviduct of a mammal.
\qquad
\qquad
\qquad
(c) Describe the function of the amnion.
\qquad
\qquad
(d) A disease called thalassaemia is caused by a person's genes.

The haemoglobin gene has two alleles, \mathbf{T} and \mathbf{t}. A person with the alleles $\mathbf{t t}$ has thalassaemia, but a person with alleles Tt does not.
(i) State which allele, \mathbf{T} or \mathbf{t}, is dominant. Explain your answer.
allele \qquad
explanation
(ii) Complete the genetic diagram to show how two parents who do not have thalassaemia could have a child with thalassaemia.
phenotypes of parents

man without	woman without
thalassaemia	thalassaemia

genotypes of parents
Tt
gametes

and

gametes from woman

gametes

(iii) Thalassaemia reduces the amount of normal haemoglobin in the blood. Explain why someone with thalassaemia often does not have the energy to do vigorous exercise.
\qquad
\qquad
\qquad

6 Fig. 6.1 shows how the current in a circuit containing a resistor varies with voltage.

Fig. 6.1
(a) In the space below draw a circuit diagram for the circuit you would use to obtain the results shown in Fig. 6.1.

Your circuit should include:- ammeter
connecting wires
power supply
resistor
voltmeter
(b) (i) Predict the value of the current in the circuit at 20 V .

Explain your answer.
prediction A
explanation \qquad
\qquad
(ii) State the number of coulombs of charge flowing per second when the current in the circuit is 0.5 A .

C
(iii) Name the particle responsible for carrying this charge around the circuit.

7 In many countries, river water is collected and treated to make it safe for humans to drink.
(a) (i) Suggest one way in which a river could become polluted because it flows through land which is used for agriculture (farming).
\qquad
\qquad
\qquad
(ii) Describe how water in rivers and lakes could become polluted if sulfur compounds are not removed from fossil fuels before they are burned.
\qquad
\qquad
\qquad
\qquad
(iii) Explain which one of the treatments shown below might not remove all the harmful bacteria from water which is to be used for drinking.

(b) In an experiment to compare the hardness of three water samples, \mathbf{A}, \mathbf{B} and \mathbf{C}, equal volumes of water were shaken with the same volume of soap solution.

Fig. 7.1 shows the appearance of each mixture after shaking.

Fig. 7.1
(i) Suggest a substance, present in water samples A and C, which has reacted with soap to form scum.
\qquad
(ii) Explain the difference in appearance between the mixtures in Fig. 7.1.
\qquad
\qquad
\qquad
\qquad

8 A healthy plant growing in a pot was watered and placed in a sunny window. A transparent plastic bag was placed over the plant, as shown in Fig. 8.1.

Fig. 8.1
(a) The temperature near the window fell overnight. The next morning, small droplets of liquid water were visible on the inside of the plastic bag.
(i) Explain where the water came from.
\qquad
\qquad
\qquad
(ii) Explain why the water formed droplets of liquid on the plastic bag.
\qquad
\qquad
(b) The plastic bag was then removed from the plant. The plant lost a lot of water and wilted. Fig. 8.2 shows the wilted plant.

Fig. 8.2
Explain why the main stem of the plant remained upright when the rest of the plant wilted.
\qquad
(c) Fig. 8.3 shows a cell from the plant leaf before and after it wilted.

Fig. 8.3
(i) On the diagram of the cell before wilting in Fig. 8.3, label and name two structures that would not be present in an animal cell.
(ii) Using your knowledge of osmosis, explain what happened to the plant cell to cause its appearance after wilting.
\qquad
\qquad

9 The chemical symbols for the atoms shown below include proton (atomic) numbers and nucleon (mass) numbers.

(i) State which of these symbols represent atoms of elements in the same group of the Periodic Table.
\qquad
(ii) Complete Table 9.1 which shows the names and the numbers of protons and neutrons in two of the atoms shown above.

Table 9.1

element name	protons	neutrons
oxygen		
	15	16

(b) Fig. 9.1 shows a diagram of a water molecule, $\mathrm{H}_{2} \mathrm{O}$.

Choose words or phrases from the following list to complete the labelling of the diagram.

covalent bond	hydrogen atom	ionic bond
nucleus	oxygen atom	proton

\qquad
\qquad

Fig. 9.1
(c) Carbon and hydrogen combine to form a very large number of different compounds. Ethene is a gaseous, unsaturated compound of carbon and hydrogen.

Fig. 9.2 shows two different chemical reactions, $\mathbf{1}$ and $\mathbf{2}$, involving ethene.

Fig. 9.2
(i) What general name is given to all compounds which contain only carbon and hydrogen?
(ii) Explain the meaning of the term unsaturated when used to describe ethene.
\qquad
\qquad
\qquad
(iii) For reaction 1 above, deduce the type of chemical reaction which occurs and name the substance which has reacted with ethene.
type of reaction
substance which has reacted with ethene
(iv) For reaction 2 above, deduce the type of chemical reaction which occurs and describe briefly what happens to the molecules of ethene during the reaction.
type of reaction
what happens to ethene molecules \qquad
\qquad
\qquad

10 (a) Below is a list of some types of waves.
gamma
infra-red
microwave
sound
ultrasound
ultraviolet
visible light

State one wave from the list that is
(i) a longitudinal wave, ... [1]
(ii) a transverse wave,
(iii) emitted by hot objects but cannot be seen by the human eye,
(iv) used to send mobile phone (cell phone) messages from phone to phone.
(b) Green light and red light are two of the three primary colours for light.
(i) Name the third primary colour for light.
(ii) Name one secondary colour for light.
DATA SHEET
The Periodic Table of the Elements

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

[^0]: Please turn over for Question 5.

