

	UNIVERSITY OF CAMBRIDGE INTERNAT International General Certificate of Seconda		MMM. HEREINEPADEIS. COM
CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CO-ORDINAT	ED SCIENCES		0654/32

Paper 3 (Extended)

October/November 2010 2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions. A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

This document consists of 25 printed pages and 3 blank pages.

1 (a) Fig. 1.1 shows apparatus used in the electrolysis of copper chloride solution.

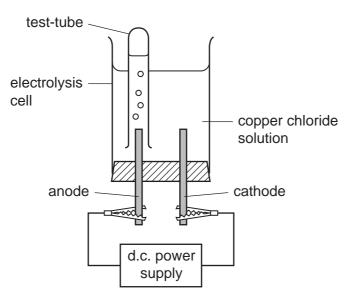


Fig. 1.1

- (i) Describe what is observed at the cathode.
 - [1]
- (ii) Chloride ions have a single negative electrical charge, Cl^{-} .

For every copper ion in the solution, two chloride ions are present.

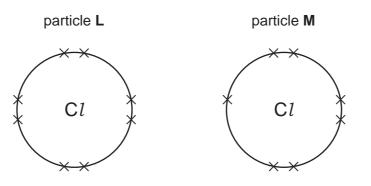
Deduce the electrical charge of a copper ion.

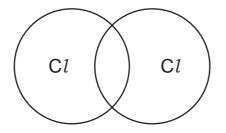
Show how you obtained your answer.

[2]

(iii) Fig. 1.2 shows diagrams of two particles L and M. Each of these particles have 17 protons in their nucleus. Only the outer shell of each particle is shown.

3



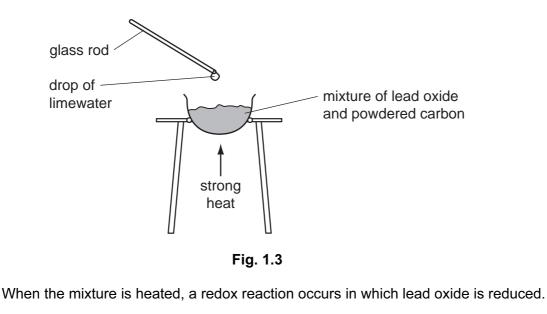

Fig. 1.2

State and explain which one of these particles, L or M, would move towards the anode during electrolysis.

particle _____

(iv) The bubbles of gas which rise from the anode contain diatomic molecules of chlorine.

Complete the bonding diagram below to show how the outer electrons are arranged in a chlorine molecule.



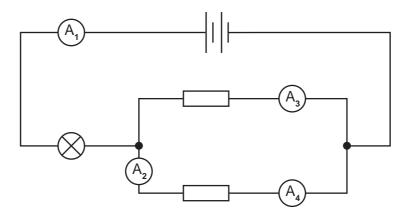
[2]

For

Examiner's Use (b) The apparatus shown in Fig. 1.3 can be used to investigate the reaction between lead oxide, PbO, and carbon.

For Examiner's Use

The drop of limewater suspended on the glass rod turns cloudy.

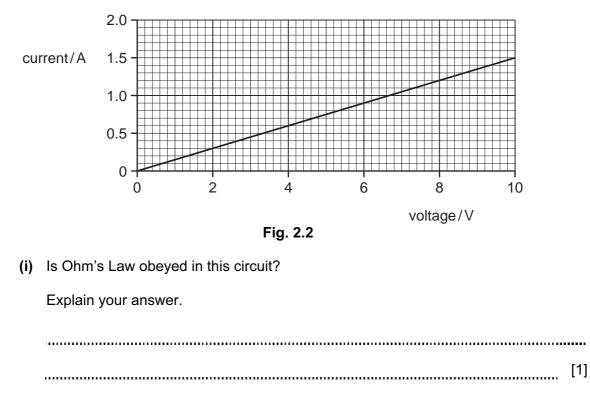

- (i) Name the gas which is produced in this redox reaction.
- [1]
 (ii) Suggest the balanced symbolic equation for the redox reaction between lead oxide and carbon.
 [2]
 (iii) A student suggested carrying out a similar redox reaction to that shown in Fig. 1.3, using potassium oxide instead of lead oxide.
 Potassium is an alkali metal in Group 1 of the Periodic Table.
 Predict and explain whether or not there would be a redox reaction between potassium oxide and carbon.
 [2]

BLANK PAGE

5

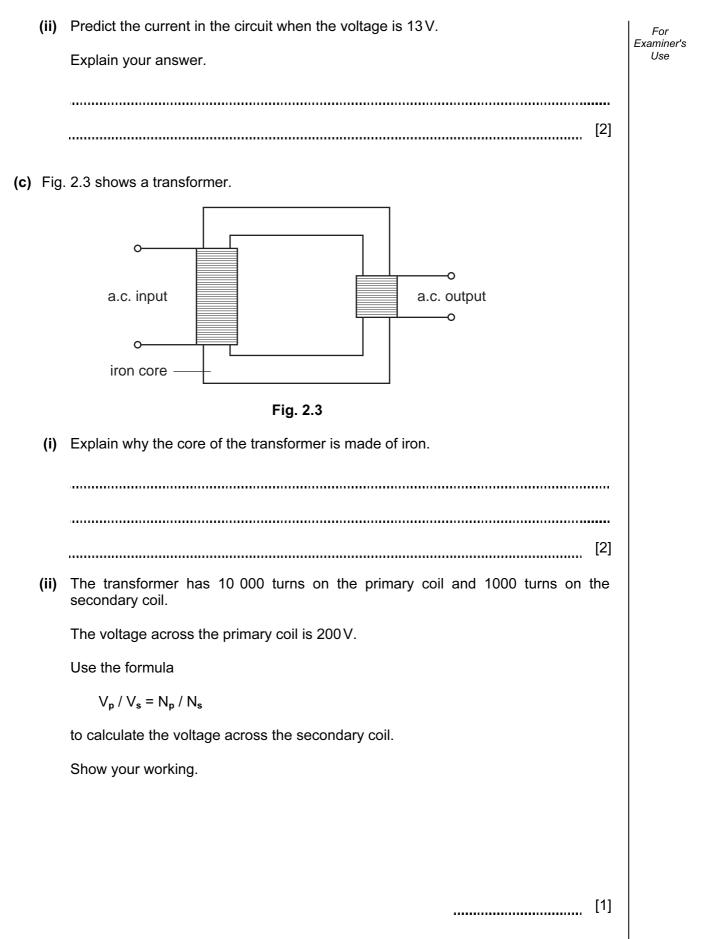
Please turn over for Question 2.

2 (a) Fig. 2.1 shows an electric circuit.



Complete Table 2.1 to show the reading on each ammeter.

Та	ble	2.1


ammeter	current/amps
A ₁	0.7
A ₂	
A ₃	
A ₄	0.3

(b) Fig. 2.2 shows how the current in a circuit varies with voltage.

For Examiner's Use

[2]

7

3 A healthy plant growing in a pot was watered and placed in a sunny window. A transparent plastic bag was placed over the plant, as shown in Fig. 3.1.

For Examiner's Use

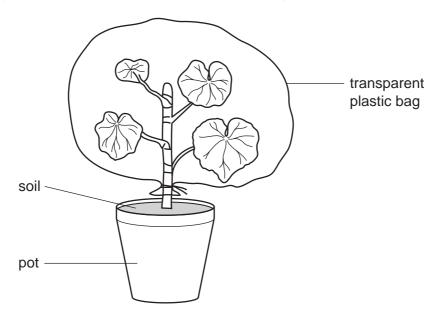


Fig. 3.1

(a) The temperature near the window fell overnight. The next morning, small droplets of water were visible on the inside of the plastic bag.

Explain why the droplets of water appeared on the inside of the plastic bag.

[4]

(b) The plastic bag was then removed from the plant. The next day was warm and sunny, and by the end of the day the plant had wilted. Fig. 3.2 shows the wilted plant.

For Examiner's Use

Fig. 3.2

(i) Explain why the plant wilted.
[2]
(ii) Explain why the main stem of the plant remained upright, even when the rest of the plant wilted.
[1]

(iii) Fig. 3.3 shows a cell from the plant leaf before it wilted.

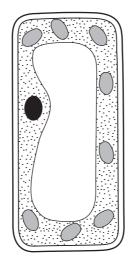


Fig. 3.3

In the space below, draw the same cell to show its appearance after the plant had wilted.

[3]

For Examiner's Use

BLANK PAGE

11

Please turn over for Question 4.

4	(a) Bel	ow is a list of some	types of waves.				For aminer Use
	ga	mma	infra-red	microwave	sour	- 1	000
		ultrasound	ultravi	iolet	visible light		
	Sta	te one wave from t	he list that is				
	(i)	a longitudinal wav	e,			[1]	
	(ii)	emitted by hot obj	ects but cannot be s	een by the human	eye,		
	(iii)	the transverse way	ve with the highest f			[1]	
						[1]	
	(b) As	ound wave has a fr	equency of 50000 H	lz.			
	(i)	Explain the meani	ng of the term <i>frequ</i>	ency.			
						[1]	
	(ii)	Explain whether a	person would be at	ole to hear this sou	nd.		
						[1]	
	(iii)	Sound waves trave	el through the air at	330 m/s.			
		Calculate the wave	elength of the sound	l wave.			
		State the formula	that you use and sh	ow your working.			
		formula used					
		working					
						[3]	

5 In many countries, river water is collected and treated to make it safe for humans to drink. For Examiner's Use (a) Explain which one of the treatments shown below might not remove all the harmful bacteria from water which is to be used for drinking. distillation chlorination filtration treatment [1] _____ (b) Sometimes large numbers of tiny pieces of insoluble solid material become dispersed in river water, forming a colloid. Fig. 5.1 shows a simplified diagram of a colloid. dispersed solid water particles Fig. 5.1 Explain in terms of light rays, why colloids are **not** transparent. You may draw some light rays on Fig. 5.1 to help you to answer this question.

[2]

.....

(c) A chemist wanted to find the concentration in mol/dm³ of sulfuric acid in a sample of acidic lake water.

Fig. 5.2 shows the apparatus and materials that he used.

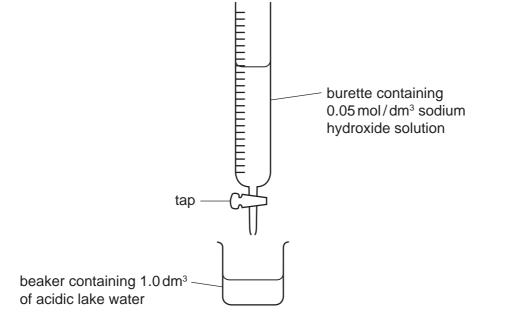


Fig. 5.2

The chemist slowly added 0.05 mol/dm³ sodium hydroxide solution to 1.0 dm³ of acidic lake water contained in a beaker until the acid had just been neutralised.

The chemist found that it required 12.5 cm^3 of $0.05 \text{ mol}/\text{dm}^3$ sodium hydroxide solution to neutralise the acid.

(i) State the number of moles of sodium hydroxide which are dissolved in 1.0 dm³ of the sodium hydroxide solution.

[1]

(ii) Calculate the number of moles of sodium hydroxide which are dissolved in 12.5 cm³ of the sodium hydroxide solution.

Show your working.

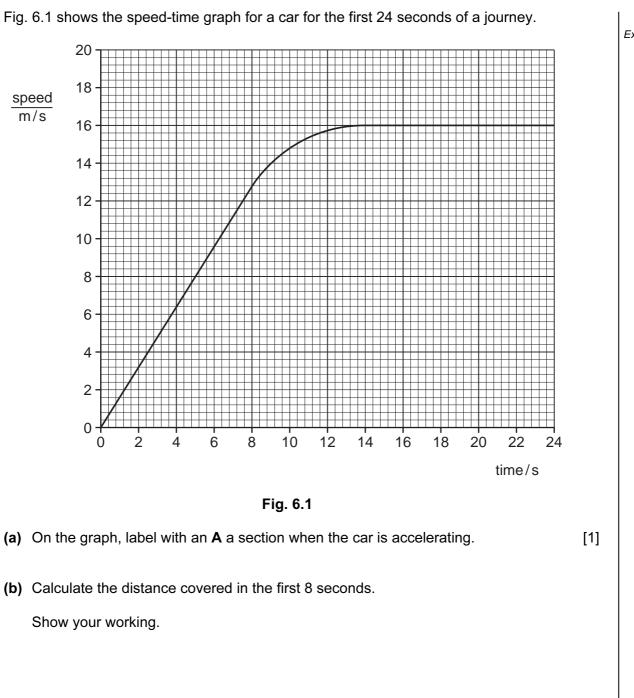
[2]

14

For

Examiner's Use (iii) The balanced equation for the neutralisation reaction is

 $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$


Calculate the number of moles of sulfuric acid which were contained in $1.0 \, \text{dm}^3$ of acidic lake water.

Show your working.

[2]

© UCLES 2010

For Examiner's Use

6

For Examiner's Use

[2]

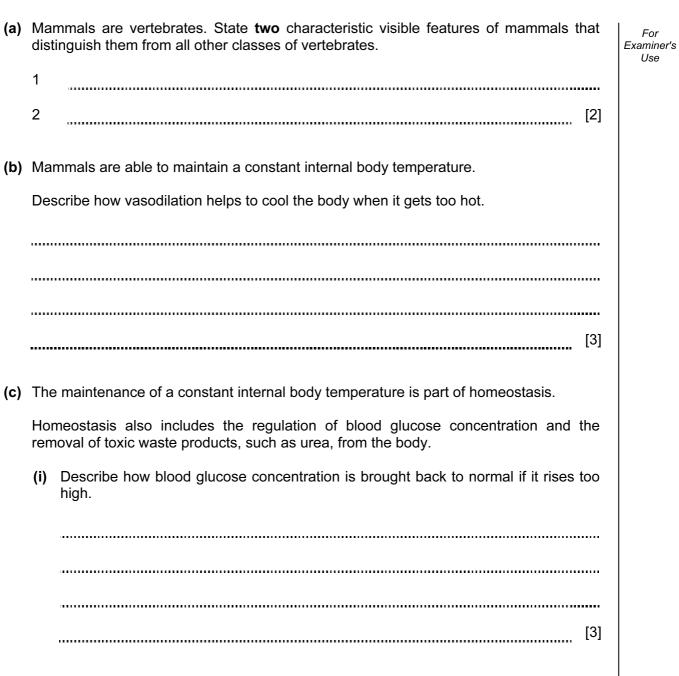
(c) The mass of the car is 800 kg.

Calculate the kinetic energy of the car when travelling at its maximum speed on this journey.

State the formula that you use and show your working.

formula used

working


[3]

For Examiner's Use

(d) When the speed of a car doubles, its momentum also doubles but its kinetic energy is four times greater.

Explain why.

[2]

7

(ii) Urea is removed from the body dissolved in water, forming urine. Fig. 7.1 is an incomplete diagram of the kidneys and other organs involved in the removal of urea from the body.

to from heart heart kidney bladder

Fig. 7.1

Complete Fig. 7.1 by drawing and labelling:

- the renal arteries
- the renal veins
- the ureters
- the urethra

[4]

For

Examiner's Use 8 (a) A scientist uses a Geiger counter to measure radiation from a radioactive source.

Fig. 8.1 shows the graph of her results.

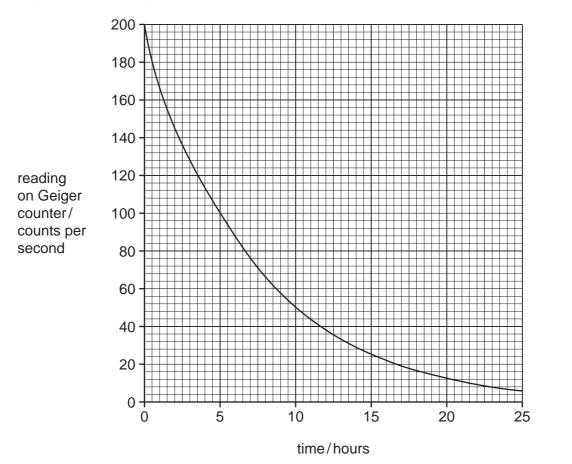


Fig. 8.1

Calculate the half-life of the radioactive source.

Show your working.

[2]

For Examiner's

Use

20

© UCLES 2010

(b)	Alp	ha radiation is a form of ionising radiation.	For Examiner's
	(i)	Explain the meaning of the term ionising radiation.	Use
		[1]	
	(ii)	An alpha radiation source is less harmful to humans than a gamma radiation source if it is outside the body.	
		An alpha radiation source is more harmful than to humans than a gamma radiation source if it is inside the body.	
		Explain why.	
		[2]	
(c)	Nuc	clear fission and nuclear fusion are both sources of energy.	
	(i)	Describe how these two processes differ.	
		[2]	
	(ii)	There are safety concerns about the use of nuclear fission as an energy resource.	
		Describe and explain one of these safety concerns.	
		[2]	

(a) The chemical symbols for the atoms shown below include proton (atomic) numbers and nucleon (mass) numbers.

For Examiner's Use

[2]


 ${}^{16}_{8}O {}^{31}_{15}P {}^{32}_{16}S {}^{70}_{31}Ga$

Complete Table 9.1 which shows the names and the numbers of protons and neutrons in two of the atoms shown above.

Tabl	е 9	.1
------	-----	----

element name	protons	neutrons
oxygen		
	15	16

(b) Fig. 9.1 shows part of a chart of the melting points in kelvins (K) of some elements.

9

23

The melting points of the elements in Period 2 and Period 3 of the Periodic Table show a periodic pattern.

(i) Use Fig. 9.1 and your understanding of the term *periodic pattern* to predict the element which has the highest melting point in Period 3.

Explain your choice briefly.

element

.....

explanation

(ii) Carbon, proton number 6, and nitrogen, proton number 7, have very different melting points.

Explain the difference in terms of the structures of these elements.

In your answer you should include the phrases, giant structure and simple molecular structure.

You may wish to draw diagrams as part of your answer.

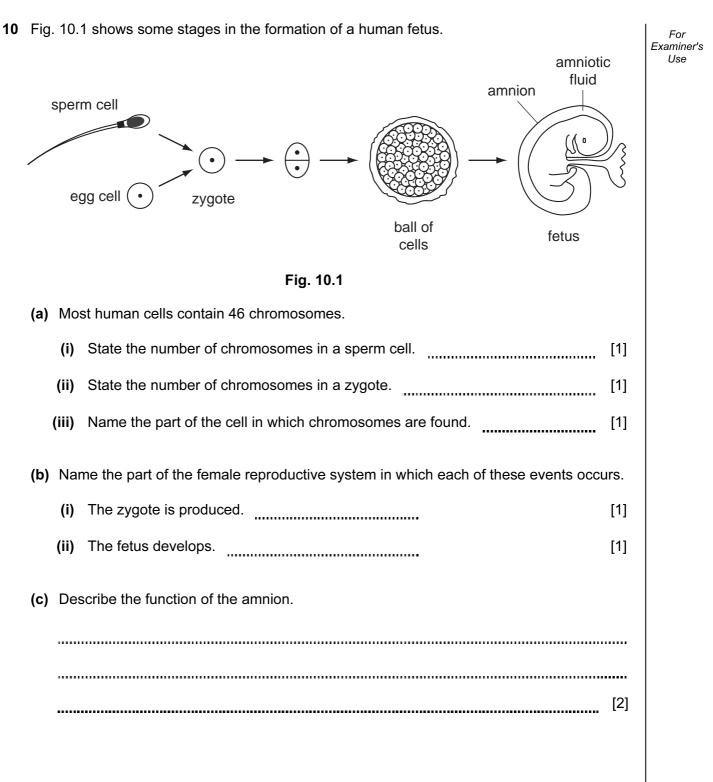
 [3]

For

Examiner's Use

- (c) Carbon and hydrogen combine to form a very large number of hydrocarbons. Ethene, C_2H_4 , is a gaseous, unsaturated hydrocarbon, which is of industrial importance.
 - (i) Complete the displayed formula of the ethene molecule below.
 - H | C

(ii) Unsaturated hydrocarbons are made in industry from fractions obtained by the fractional distillation of oil (petroleum).


Name the process which is used to make unsaturated hydrocarbons and describe briefly how it is done.

name of process	
description	
	[3]

(iii) Describe, in terms of changes to chemical bonds, what happens when ethene molecules react to form molecules of poly(ethene).

[2]

[2]

(d) Mutations sometimes occur in the chromosomes of a cell.

Mutations are generally harmful, but sometimes a mutation may increase an organism's ability to survive in its environment.

For Examiner's Use

Explain how this could lead to a change, over time, in the characteristics of a population of organisms.

[4]

BLANK PAGE

	0	4	Helium Helium	2	20	Ne	Neon 10	40	Ar	Argon 18	84	Kr	Krypton 36	131	Xe	Xenon 54		Rn	Radon 86			175			71	-		103
	, >				19	ш	Fluorine 9	35.5	CI	Chlorine 17	80	Br	Bromine 35	127	Ι	lodine 53		At	Astatine 85			140	ੇ ਮ	Ytterbium	02		Nobelium Modelium	102
	5	_			16	0	Oxygen 8	32	S	Sulfur 16	62	Se	Selenium 34	128	Te	Tellurium 52		Ро	Polonium 84			007	E F	Thulium	69		Md	
	>				14	z	Nitrogen 7	31	₽.	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	<u>B</u>	Bismuth 83			101	È		68	l	E T	100
	2				12	ပ	Carbon 6	28	Si	Silicon 14	73	Ge	Germanium 32	119	Sn	Tin 50	207	Ъb	Lead 82			101			67	I	ES	
	≡	_			1	۵	Boron 5	27	٩١	Aluminium 13	70	Ga	Gallium 31	115	In	Indium 49	204	11	Thallium 81			ça t		Dysprosium	66	č	5	O.R.
												Zn	Zinc 30	112	В	Cadmium 48	201	Hg	Mercury 80			0	Ē		65	ī	BK	
											64	Cu	Copper 29	108	Ag	Silver 47	197	Au	Gold 79			167	رة م	Gadolinium	64		c a	
Group											59	ïZ	Nickel 28	106	Pd	Palladium 46	195	£	Platinum 78			507	701	Europium	63		Am	
Gre											59	ပိ	Cobalt 27	103	Rh	Rhodium 45	192	Ir	Iridium 77			0	2 0 0	Samarium	62	Ċ	Pu	
			Hydrogen	-							56	Fe	Iron 26	101	Ru	Ruthenium 44	190	Os	Osmium 76				200	omethium	61		Nontrol	
											55	Mn	Manganese 25		ЦС	Technetium 43	186	Re	Rhenium 75			4	# 7	ž		238		
											52	ບັ	Chromium 24	96	Мо	Molybdenum 42	184	≥	Tungsten 74			77	- -	Praseodymium	59	ć	Pa	
											51	>	Vanadium 23	93	qN	Niobium 41	181	Та	Tantalum 73			011	۰ د	Cerium	58	232	L h	
											48	⊨	Titanium	91	Zr	Zirconium 40	178	Ħ	Hafnium 72						ic mace	10 11000	00	nic) number
													22 22									_ 1			~			
								1			45		Scandium 22	68		Yttrium 39	139	La	Lanthanum 57 *	227	Actinium Actinium		series	eries	- rolative ato	- יכומוועס מוטו	= atomic syn	= proton (ator
	=	-			6	Be	Beryllium 4	24	Mg	Magnesium 12		Sc	candium 22		~	Yttrium	137 139		Barium Lanthanum 56 57 *		dinium dinium		*58-71 Lanthanoid series	190-103 Actinoid series	o – rolotivo otomio mose		X = atomic symbol	b = proton (atomic) number

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

28