CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

www.PapaCambridge.com

MARK SCHEME for the October/November 2013 series

5070 CHEMISTRY

5070/22

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page	2	Mark Scheme	Syllabus	
			GCE O LEVEL – October/November 2013	5070	
A 1	(a) o	xygen /	O ₂ (1)	Syllabus 7 dipport	Brie
	(b) n	ickel / N	Ni (1)	`	'age
	(c) s	ulfur / S		[1]	
	(d) p	otassiu		[1]	
	(e) s	ilver / A	ag (1)		[1]
	(f) z	inc / Zn	1 (1)		[1]
				[Tota	l: 6]
A2	(a) (i	•	reases as number of carbon atoms increases / increases decreases (1)	ases as number of carbon	[1]
	(ii	i) etha	anoic (acid) (1)		[1]
	(iii	i) corre	ect formula for propanoic acid showing all atoms and	d all bonds (1)	
			н н о		
		н			
					[4]
			н н		[1]
	(b) (i	i) C₅H	1 ₀ O ₂ (1)		[1]
	(ii	i) any	value between and including 180–195°C (1)		[1]
	(c) (i		rogen (1) .OW: H ₂		[1]
	(ii	i) C₃H	₇ CO₂Na / C₄H ₇ O₂Na / correct displayed or structural	formula (1)	[1]
	(d) (i	i) spe	eds up reaction (rate) / reaction faster (1)		
			ers activation energy/makes reaction go by different rers energy barrier (1)	route using less energy /	[2]
	(ii	i) solv	ent / fragrance / perfume / food additive / flavourings	/ polyesters / terylene (1)	[1]
	(iii	i) prop		[1]	
				[Total:	11]

Page 3			Mai	rk Sche	eme	Syllabus	1. D
		GCE O LE	VEL –	Octobe	r/November 2013	5070	Phys.
	2,8,4 (1)						Cambridge
(b)	isotope		²⁸ Si	³⁰ Si			S'COM
	number of	protons	14	14	(1)		

A3 (a) 2,8,4 (1)

			_
isotope	²⁸ Si	³⁰ Si	
number of protons	14	14	(1)
number of electrons	14	14	(1)
number of neutrons	14	16	(1)

[3]

(c) Si +
$$2Cl_2 \rightarrow SiCl_4$$
 (1)

[1]

(d) (i) does not conduct electricity / does not conduct heat (1)

liquid (at room temperature) / low melting point / low boiling point (1)

[2]

(ii) bonding pair between each of the 4 Si and Cl atoms (1)

rest of structure completely correct (1)

IGNORE: inner shell electrons

[2]

(e) many (strong) bonds / many (covalent) bonds / lattice / giant structure / lattice of covalent bonds (1)

a lot of energy needed to break the bonds / high temperature needed to break the bonds / strong bonds (1)

[2]

[Total: 11]

A4 a (i) Any two of:

- respiration/fermentation (1)
- decay of organic matter / decomposition of organisms (1)
- combustion of carbon (compounds)/combustion of fossil fuel / combustion of named fossil fuel (1)
- decomposition of carbonates/decomposition of limestone (1)
- from increasing temperature of the oceans / removal of (dissolved) carbon dioxide from oceans (1)
- volcanoes (1)

[2]

(ii) photosynthesis/absorbed by oceans/absorbed by seas (1)

[1]

(b) (i) gas which absorbs infra-red (radiation) / gas which absorbs infra-red (light) (1) **ALLOW:** gas which traps heat / gas which absorbs heat

[1]

Page 4				Mark Scheme	Syllabus					
	ı a	gc -	'	5070 %						
ALI (me dige ALI				Mark Scheme GCE O LEVEL – October/November 2013 me: methane/other named greenhouse gas (1) LOW: CFCs/nitrous oxide ethane) from swamps / rice paddy fields / gas from waste from animal gestion / termites / wetlands (1) LOW: (for methane) bacterial action (unqualified) / fracking / animal gestion (unqualified) / permafrost / glaciers / landfill						
	(c)	(i)	NOTE: 2nd mark for source is dependent on the correct gas (i) (acid which is) incompletely ionised (in water) / (acid which is) partly dissociated the social soci							
	(0)	(acid which is) incompletely dissociated (in water) (1)								
		(ii)	add	universal / full range indicator (1)						
		compare the colour with (colour on) indicator colour chart (1)								
	(d)	2NaHCO ₃ → Na ₂ CO ₃ + CO ₂ + H ₂ O correct formulae (1) correct balance (1)								
		[Το								
A 5	(a)	Mg	+ 2H	$Cl \rightarrow MgCl_2 + H_2 (1)$		[1]				
	(b)	(i)		s labelled correctly with appropriate units e.g. volume in seconds/s on horizontal axis (1)	e in cm³ on vertical axis and					
		graph rising steadily from near 0–0 point (although 0 does not have to be shown then either levelling off horizontally or rising with decreasing gradient but not yet finished (1)								
		(ii) initial gradient less steep from the start								
			AND reaction finishing at same volume of gas as original or still below original level but likely to finish at the same volume as line A (1)							
	(c)) molar mass of $MgC_2 = 48$ (1) $24/48 = 50\%$ (1)								
		1 m	ark fo	or ecf from wrong molar mass of magnesium carbide	Э	[2]				
	[Total									
					[-]				

		3	2
Page 5	Mark Scheme	Syllabus	· 03
	GCE O LEVEL – October/November 2013	5070	100
B6 (a) 2 marks	for the reactions at the anode and cathode:		Calm

B6 (a) 2 marks for the reactions at the anode and cathode: anode reaction: $2O^{2-} \rightarrow O_2 + 4e^- / 2O^{2-} - 4e^- \rightarrow O_2$ (1)

cathode reaction: $Al^{3+} + 3e^- \rightarrow Al / Al^{3+} \rightarrow Al - 3e^- (1)$

2 marks for the description:

mention of molten aluminium oxide + cryolite in correct context (1)

AND

Any one of:

- cryolite increases conductivity of aluminium oxide / cryolite helps in dissolving electrolyte mixture (1)
- graphite electrode(s) / carbon electrode(s) (1)
- any temperature between and including 900–1200 °C quoted (1)
- at anode carbon + oxygen → carbon dioxide (in words or equation) (1)
- **(b) (i)** low density (1) [1]
 - (ii) (good) <u>electrical</u> conductor (1)

 ACCEPT: has mobile electrons [1]
- (c) (i) has an oxide layer (1)

oxide (layer) is unreactive / oxide (layer) 'sticks' strongly to the surface (of the aluminium) / oxide is non-porous (1) [2]

(ii) displacement / redox (1) [1]

(iii) $Al_2(SO_4)_3$ (1) [1]

[Total: 10]

B7 (a) (unsaturated): has (carbon-carbon) double bond (1)

(hydrocarbon): contains carbon and hydrogen only / has no other elements than Carbon and hydrogen (1) [2]

(b) (i) high temperature / values between and including 400–500 °C (1)

catalyst/aluminium oxide / zeolites / silicon dioxide (1) [2]

(ii) $C_{14}H_{30} \rightarrow C_2H_4 + C_{12}H_{26}$ (1) [1]

(c) (i) cling film/ bottles / bags / packaging / sandwich bags / moisture barrier / dampproofing / toys / jugs / plates / dustbins / water pipes / screw closures / sacks / gas
pipes / bubble wrap / cable coverings / pond linings / ropes / nets / greenhouses /
paints / glues / waxes / (outdoor) furniture e.g. tables / chairs etc. (1) [1]

(ii) C_2H_5 | / $C_2H_5CH=CH_2$ (1) $CH=CH_2$ [1]

											-	1	4			
	Pa	ge 6	;			M	lark Sc	heme				Syllab	us	2.0	1	
		9		G	CE O LE				ovembe	r 2013		5070)	18	000	
	(d)	28 g ethene → 46 g ethanol (1)										Call	8			
		age 6 Mark Scheme Syllabus GCE O LEVEL – October/November 2013 5070 28 g ethene → 46 g ethanol (1) 0.4 tonnes gives 0.4 × 46/28 OR 0.657 / 0.66 (tonnes) (1) ALLOW: ecf from incorrect molar masses											Tage			
		$(0.657 \times 5/100) = 0.03 / 0.033 / 0.0329$ (tonnes) (1) ALLOW: ecf from step 2 i.e. for x answer in step 2 by 5/100										[3]				
															[Total:	: 10]
В8	(a)	I) Idea of reactants being converted to products at the same time as products converted to reactants / reaction is reversible (1) reactants and products at constant concentrations / amounts of reactants and products are constant(1)														
		OR rate of forward reaction = rate of backward reaction = 2 marks								[2]						
	(b)	(i) mol HI = 0.94 x 50/1000 OR 0.047 mol (1)														
		mass HI = $0.047 \times 128 = 6 / 6.0 / 6.02 / 6.016$ (g) (1)							[2]							
		(ii) At 25 °C high <u>er</u> concentration of reactant / low <u>er</u> concentration of products / At 450 °C low <u>er</u> concentration of reactant / high <u>er</u> concentration of products / decrease in temperature shifts reaction to the left / increase in temperature shifts reaction to right / concentration of reactant increases as temperature decreases / concentration of products increases as temperature increases (1)								n to						
		reaction is endothermic (1)								[2]						
	(c)	labelled products / H_2 + I_2 on right and above the reactants (1)														
		enthalpy change shown as upward pointing arrow with ΔH or 'enthalpy change' (1)								[2]						
	(d)	ado	d (aqu	ueous)	silver n	itrate /	lead n	itrate ((1)							
		yell	ow pr	recipita	ate (1)											[2]
		т							[Total:	: 10]						
В9	(a)	a) to increase plant growth / to improve plant growth / to grow better / to increase the crop / to increase the yield / to make more (plant) proteins / to make more amino acids / speeds up growth (of crops) (1)							crop	[1]						
	(b)	b) $2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$ (1)								[1]						

Page 7	Mark Scheme	Syllabus	.0
	GCE O LEVEL – October/November 2013	5070	100

- (c) (i) OH⁻ (1)
 - (ii) ammonia is produced / NH₃ produced (1) ammonia lost to the air / ammonia is a gas (1)

[2] COM

(d) mol HC
$$l = 0.01 \times 4/1000$$
 OR 4×10^{-5} (1)

mol Ca(OH)₂ = 2×10^{-5} / half answer to mol HCl (1)

concentration of Ca(OH)₂ =
$$(2 \times 10^{-5} \times 1000 / 10)$$

= 2×10^{-3} mol / dm³ (1)

[3]

(e) heat solution to crystallisation point / leave in a warm place / partially evaporate solution (1)

filter (off crystals) / pick out crystals

AND

dry crystals with filter paper (1)

[2]

[Total: 10]