

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

NS AND COMPAGE COMP

CHEMISTRY 5070/11

Paper 1 Multiple Choice October/November 2013

1 hour

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil (type B or HB recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

DO NOT WRITE IN ANY BARCODES.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

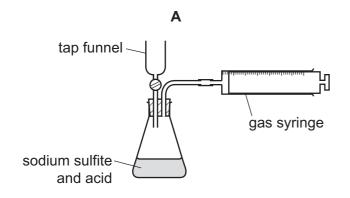
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

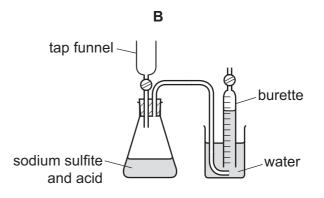
Any rough working should be done in this booklet.

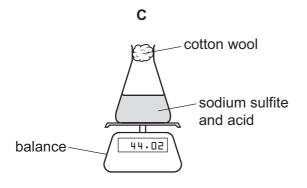
A copy of the Periodic Table is printed on page 16.

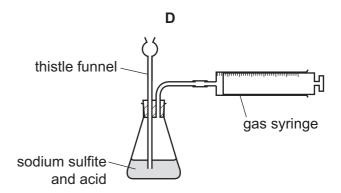
Electronic calculators may be used.

www.PapaCambridge.com


- 1 Which process provides the best evidence for the particle theory of matter?
 - A dehydration
 - **B** diffusion
 - **C** filtration
 - **D** neutralisation
- **2** The results of two tests on a solution **X** are shown.

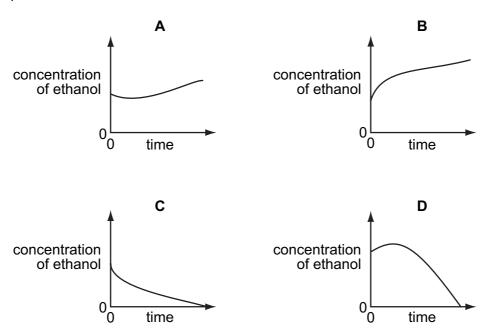

reagent added	few drops	an excess		
aqueous sodium hydroxide	white precipitate	precipitate dissolves		
aqueous ammonia	white precipitate	precipitate remains		


Which ion is present in solution X?


- **A** Al^{3+}
- **B** Ca²⁺
- C Cu²
- **D** Zn²⁺
- **3** A student wanted to follow how the rate of the reaction of sodium sulfite with acid varies with time. The reaction produces gaseous sulfur dioxide.

Which apparatus is **not** suitable?

www.papaCambridge.com 4 The apparatus shown is used to distil a dilute solution of ethanol in water. [B.P.: ethanol, 78 °C; water 100 °C] thermometer water out fractionating column water in

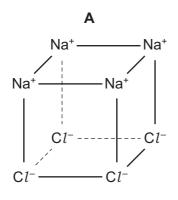

Which graph shows the change in concentration of the ethanol in the boiling flask as the distillation proceeds?

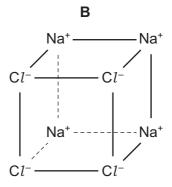
heat

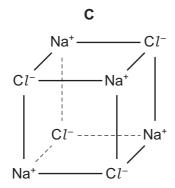
boiling flask

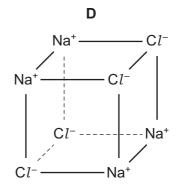
and water

mixture of ethanol

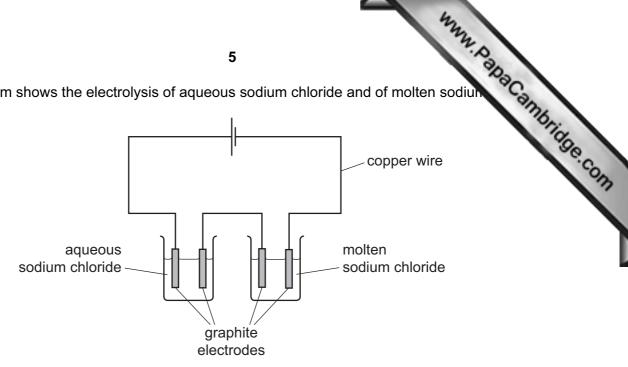



[Turn over © UCLES 2013


www.papaCambridge.com Aqueous silver nitrate is added to separate solutions of potassium chloride and sodiu. 5 What are the colours of the precipitates formed?


	colour of precipitate formed with chloride	colour of precipitate formed with iodide		
Α	white	white		
В	white	yellow		
С	yellow	white		
D	yellow	yellow		

- Which substance will **not** conduct electricity at room temperature and pressure?
 - dilute nitric acid
 - В graphite
 - C mercury
 - D sodium chloride
- 7 Which diagram correctly shows the arrangement of the ions in solid sodium chloride?



8 The diagram shows the electrolysis of aqueous sodium chloride and of molten sodium

Which substance in the diagram has both positive ions and mobile electrons?

- aqueous sodium chloride
- В copper wire
- C graphite electrodes
- molten sodium chloride D
- 9 Which statement describes the conversion of magnesium atoms to magnesium ions?
 - The change is reduction, because there has been a gain of electrons.
 - В The change is oxidation, because there has been a loss of electrons.
 - C The change is reduction, because there has been a loss of electrons.
 - D The change is oxidation, because there has been a gain of electrons.

© UCLES 2013 [Turn over

www.PapaCambridge.com 10 The diagram shows the structural formula of the covalent molecule hydrazine, N₂H₄

Consider all the electrons in a molecule of hydrazine.

Which description fits the arrangement of these electrons in the molecule?

	total number of electrons involved in bonding	total number of electrons not involved in bonding		
Α	5	4		
В	5	8		
С	10	4		
D	10	8		

11 Sodium hydrogencarbonate decomposes on heating.

$$2NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2$$

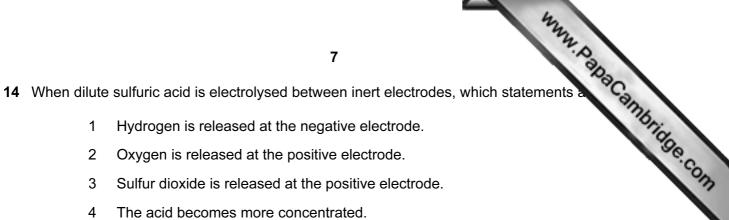
In an experiment, a 5.0 mol sample of sodium hydrogenicarbonate is heated.

Which volume of carbon dioxide, measured at room temperature and pressure, is evolved?

- 24 dm³
- $36\,\mathrm{dm}^3$ В
- **C** 48 dm³
- $60\,\mathrm{dm}^3$

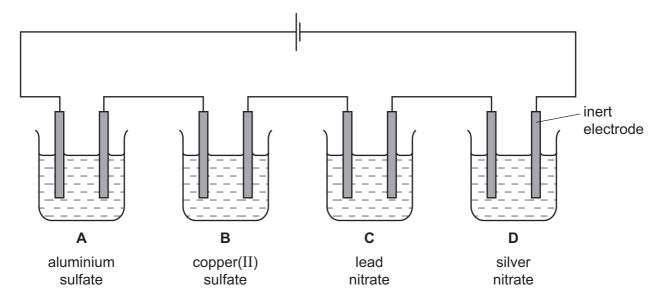
12 Nitrogen and oxygen react according to the equation.

$$N_2(g) + 2O_2(g) \rightarrow 2NO_2(g)$$


The enthalpy change for the reaction shown is +66 kJ.

If two moles of nitrogen and two moles of oxygen are used, what will be the enthalpy change?

- +16.5 kJ
- **B** +33 kJ
- C +66 kJ
- +132 kJ


13 Which statement about the four gases carbon dioxide, CO₂, hydrogen, H₂, oxygen, O₂ and ozone, O₃ is correct?

- One mole of each gas occupies the same volume at a given temperature and pressure.
- Ozone has the fastest rate of diffusion at a given temperature and pressure. В
- C They are all denser than air.
- D They are all elements.

- 1 Hydrogen is released at the negative electrode.
- 2 Oxygen is released at the positive electrode.
- 3 Sulfur dioxide is released at the positive electrode.
- 4 The acid becomes more concentrated.
- **A** 1, 2 and 4
- В 1 and 2 only
- 2 and 3
- **D** 3 and 4
- 15 When electrolysed using inert electrodes, which dilute solution would produce the greatest increase in mass of the cathode?

[A_r: Al, 27; Cu, 64; Pb, 207; Ag, 108]

16 The formation of liquid water from hydrogen and oxygen is thought to occur in three stages.

- $2H_2(g) + O_2(g) \rightarrow 4H(g) + 2O(g)$
- 2 $4H(g) + 2O(g) \rightarrow 2H_2O(g)$
- $2H_2O(g) \rightarrow 2H_2O(I)$

Which stages would be exothermic?

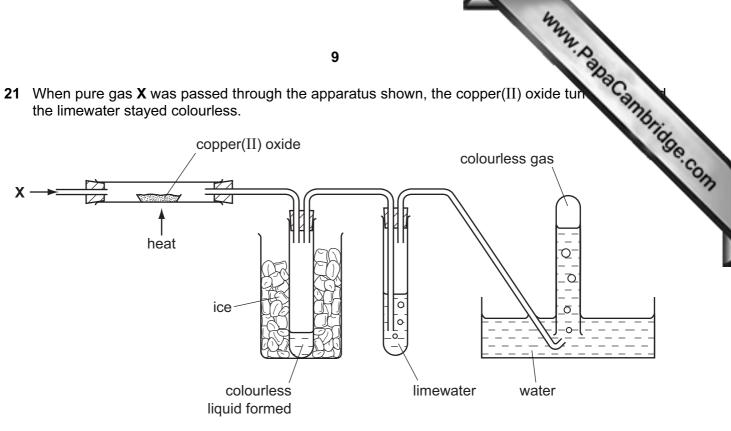
- **A** 1, 2 and 3
- 1 and 2 only В
 - C 1 only
- **D** 2 and 3 only

[Turn over © UCLES 2013

$$BiCl_3(aq) + H_2O(I) \rightleftharpoons BiOCl(s) + 2HCl(aq)$$

www.PapaCambridge.com If this reversible reaction is at equilibrium and hydrochloric acid is added, what will happen?

- Α The position of equilibrium moves to the left and more white precipitate is formed.
- В The position of equilibrium moves to the left and the white precipitate disappears.
- C The position of equilibrium moves to the right and more white precipitate is formed.
- The position of equilibrium moves to the right and the white precipitate disappears. D
- 18 Which colour change occurs when ethanol is added to a small quantity of warm, acidified potassium dichromate(VI)?
 - orange to colourless
 - В orange to green
 - C purple to colourless
 - D purple to green
- **19** Sulfur and selenium, Se, are in the same group of the Periodic Table.


From this, we would expect selenium to form compounds having the formulae

- Se₂O, Na₂Se and NaSeO₄.
- **B** SeO₂, Na₂Se and NaSeO₄.
- C SeO₂, Na₂Se and Na₂SeO₄.
- **D** SeO₃, NaSe and NaSeO₄.
- 20 When the product of a reaction between two gases is added to water, a solution of pH7 is formed.

Which could be these gases?

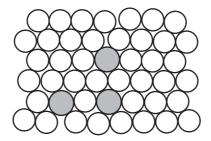
- hydrogen and chlorine
- В hydrogen and nitrogen
- hydrogen and oxygen С
- oxygen and carbon monoxide

21 When pure gas X was passed through the apparatus shown, the copper(II) oxide turn the limewater stayed colourless.

What is gas X?

- carbon dioxide
- В carbon monoxide
- C hydrogen
- D nitrogen
- 22 Which reagent is added to aqueous potassium chloride to prepare lead chloride?
 - aqueous lead nitrate Α
 - В lead
 - C lead carbonate
 - D lead sulfate
- 23 Which change in the properties of the halogens is **not** correct?

	$chlorine \to bromine \to iodine$				
Α	darker in colour				
В	decrease in melting point				
С	decrease in rate of diffusion				
D	increase in density				


[Turn over © UCLES 2013

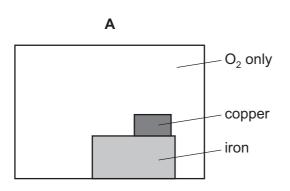
- **24** *W*, *X* and *Y* are elements in the same period of the Periodic Table.
 - X forms compounds of formulae XCl₂ and XCl₃.
 - Y forms a solution of pH12 when it reacts with water.
 - The reaction of W with water is similar to the reaction of Y with water but is less vigorous.

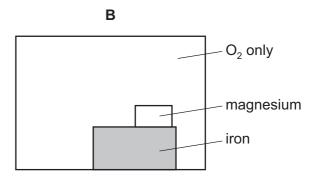
In which order are the elements in the Periodic Table?

	left to right along a period				
Α	$W \rightarrow Y \rightarrow X$				
В	$X \to W \to Y$				
С	$X \rightarrow Y \rightarrow W$				
D	$Y \rightarrow W \rightarrow X$				

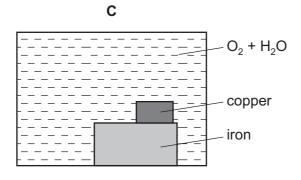
25 The diagram shows the structure of an alloy.

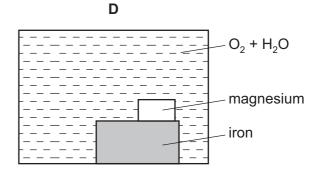
Which statement about alloys is correct?


- **A** Alloys can only be formed by mixing copper or iron with other metals.
- **B** High carbon steel alloys are soft and easily shaped.
- **C** In an alloy there is attraction between positive ions and delocalised electrons.
- **D** The alloy brass has a chemical formula.
- 26 The metals iron, lead and zinc can be manufactured by the reduction of their oxides with coke.


What is the correct order of the ease of reduction of the metal oxides?

	oxides become more difficult to reduce				
Α	iron \rightarrow lead \rightarrow zinc				
В	iron \rightarrow zinc \rightarrow lead				
С	lead \rightarrow iron \rightarrow zinc				
D	$zinc \rightarrow iron \rightarrow lead$				


Which gas is **not** formed during this process?


- A carbon dioxide
- B carbon monoxide
- C oxygen
- **D** sulfur dioxide
- 28 Which diagram correctly illustrates the conditions necessary for the rusting of iron and also the metal that can be used to prevent rusting by sacrificial protection?

www.PapaCambridge.com

29 Metals usually occur in their ore combined with another element.

Which metal is least likely to occur combined with another element?

- A aluminium
- **B** calcium
- **C** magnesium
- **D** silver

© UCLES 2013 [Turn over

30 The noble gases, argon, helium, krypton and xenon, are present in air.

Which noble gas is present in the largest proportion?

- **A** argon
- **B** helium
- C krypton
- **D** xenon
- **31** The following stages happen during eutrophication.
 - 1 increase in growth of algae
 - 2 increase in nitrate concentration
 - 3 death of aquatic plants
 - 4 decrease in dissolved oxygen

In which order do these stages occur?

- $\mathbf{A} \quad 1 \to 2 \to 3 \to 4$
- $\mathbf{B} \quad 1 \to 2 \to 4 \to 3$
- $\textbf{C} \quad 2 \rightarrow 1 \rightarrow 3 \rightarrow 4$
- $\textbf{D} \quad 2 \rightarrow 1 \rightarrow 4 \rightarrow 3$
- 32 Which gas will react with ozone in the upper atmosphere of the Earth?
 - A CF_2Cl_2
- B CH₄
- \mathbf{C} CO_2
- D SO_2
- 33 Iron is extracted from iron ore in a blast furnace.

Which solid substances are fed into the top of the blast furnace?

- 1 coke
- 2 cryolite
- 3 limestone
- **A** 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only

www.PapaCambridge.com

34 The diagram shows a simplified structure of a fat.

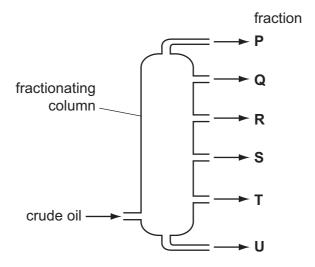
Which compounds in the table have linkages that can be found in this fat? (Do **not** consider C–H or C-C bonds as linkages.)

	ethene	nylon	Terylene		
Α	✓	✓	✓		
В	✓	✓	X		
С	✓	X	✓		
D	X	✓	✓		

35 The solubility of the carboxylic acids in water decreases as the size of the carboxylic acid molecules increases.

Which carboxylic acid is the least soluble in water?

- A butanoic acid
- B ethanoic acid
- C methanoic acid
- D propanoic acid
- **36** Poly(ethene) is the addition polymer formed from the monomer ethene.


Which statement is correct?

- A Poly(ethene) can be disposed of by burning this produces carbon dioxide and water.
- **B** Poly(ethene) decolourises bromine water.
- C Poly(ethene) has the empirical formula C₂H₄.
- **D** Poly(ethene) is acted upon by bacteria so that it decomposes quickly when in a landfill site.

© UCLES 2013 [Turn over

www.PapaCambridge.com

37 The diagram shows the fractionation of crude oil.

Which row explains why fraction **R** is collected above fraction **S**?

	boiling point of R	average molecular mass of R		
Α	higher than S	greater than S		
В	higher than S	smaller than S		
С	lower than S	greater than S		
D	lower than S	smaller than S		

38 In the manufacture of ethanoic acid, the chemical industry uses the following sequence of reactions.

compound
$$\mathbf{X} \xrightarrow{1}$$
 ethene $\xrightarrow{2}$ ethanol $\xrightarrow{3}$ ethanoic acid

What are the three processes?

	1	2	3		
Α	cracking	hydration	oxidation		
В	cracking	polymerisation	hydration		
С	hydration	polymerisation	oxidation		
D	polymerisation	oxidation	hydration		

39 Esters are formed when an alcohol reacts with a carboxylic acid.

Which ester would be formed using the carboxylic acid and alcohol shown?

carboxylic acid

www.PapaCambridge.com

alcohol

C
H—C—H
H—C—H
H—C—H
H—C—C—C—C—C—H
H—C—H
H—C—H

40 Which equation represents a combustion reaction?

$$A \quad C_2H_4 \ + \ H_2O \ \rightarrow \ C_2H_5OH$$

$$\textbf{B} \quad C_2H_5OH \ + \ O_2 \ \rightarrow \ CH_3CO_2H \ + \ H_2O$$

$$\textbf{C} \quad \text{CH}_3\text{CO}_2\text{H} \ + \ 2\text{O}_2 \ \rightarrow \ 2\text{CO}_2 \ + \ 2\text{H}_2\text{O}$$

$$\textbf{D} \quad \mathsf{CH_3CO_2H} \ + \ \mathsf{CH_3OH} \ \rightarrow \ \mathsf{CH_3CO_2CH_3} \ + \ \mathsf{H_2O}$$

The Periodic Table of the Elements DATA SHEET

					1	6				my	Dana Cambridge Com
								1			apa.
	0	Heium 2	20 Ne Neon 10	40 Ar Argon	84 Kr , Krypton 36	131 Xe Xenon Xenon 54	Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103	California
	\		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 T lodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102	Se. COM
	>		16 Oxygen 8	32 S Sulfur 16	79 Selenium 34	Tellurium	Po Polonium 84		169 Tm Thulium	Md Mendelevium 101	
	>		14 N itrogen 7	31 P Phosphorus 15	75 AS Arsenic 33	Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium 100	I
	>		12 Carbon 6	28 Si Silicon	73 Ge Germanium	Sn Tin 50	207 Pb Lead		165 Ho Holmium 67	ES Einsteinium 99	(r.t.p.).
	=		11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T (Thallium		162 Dy Dysprosium 66	Cf Californium 98	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
					65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury		159 Tb Terbium 65	BK Berkelium 97	ature and
					64 Cu Copper	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Curium 96	n tempera
Group					59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95	n³ at roon
Gre					59 Cob Cobalt	103 Rh Rhodium 45	192 I r Iridium 77		Sm Samarium 62	Pu Plutonium 94	s is 24 dr
		T Hydrogen			56 Fon Iron	Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium	of any ga
					Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 U Uranium 92	one mole
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91	olume of c
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum		140 Ce Cerium 58	232 Th Thorium 90	The vo
					48 Ti Titanium 22	2r Zirconium 40	178 Hf Hafnium * 72			iic mass ool iic) number	
					Scandium 21	89 ×	139 La Lanthanum 57 *	227 Ac Actinium †	series eries	a = relative atomic mass X = atomic symbol b = proton (atomic) number	
	=		9 Be Beryllium 4	24 Mg Magnesium	40 Ca Calcium 20	Sr Strontium 38	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	a X a	
	_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	Rb Rubidium	133 Cs Caesium 55	Fr Francium 87	*58-71 Le	Key b	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.