## MARK SCHEME for the May／June 2013 series

# 4037 ADDITIONAL MATHEMATICS <br> 4037／12 Paper 1，maximum raw mark 80 

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．

Cambridge is publishing the mark schemes for the May／June 2013 series for most IGCSE，GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components．

| Page 2 | Mark Scheme | Syllabus |
| :--- | :---: | ---: |

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the $M$ mark and in some cases an $M$ mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Accuracy mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the $M$ marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular $M$ or $B$ mark is dependent on an earlier $M$ or $B$ (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2, 1, 0 means that the candidate can earn anything from 0 to 2 .

The following abbreviations may be used in a mark scheme or used on the scripts.
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)

## Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.

OW -1,2 This is deducted from A or B marks when essential working is omitted.
PA -1 This is deducted from $A$ or $B$ marks in the case of premature approximation.

S -1 Occasionally used for persistent slackness - usually discussed at a meeting.

EX -1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.


| Page 5 | Mark SchemeGCE O LEVEL - May/June 2013 |  | Syllabus |
| :---: | :---: | :---: | :---: |
|  |  |  | 4037 |
| 4 | EITHER $\begin{aligned} 2 x^{2}+k x+2 k-6 & =0 \text { has no real roots } \\ k^{2}-16 k+48 & <0 \\ (k-4)(k-12) & <0 \end{aligned}$ <br> Critical values 4 and 12 |  |  |
|  |  | $\begin{gathered} \text { M1 } \\ \text { DM1 } \end{gathered}$ | M1 for attempted use of $b^{2}$ DM1 for attempt to obtain critı values from a 3 term quadratic |
|  |  | A1 | A1 for both critical values |
|  |  | A1 | A1 for correct final answer |
|  | $\mathbf{O R}\left(x+\frac{k}{4}\right)^{2}-\frac{k^{2}}{16}+k-3=0$ | [M1] | M1 for attempting to complete the square and obtain a 3 term quadratic |
|  | $-\frac{k^{2}}{16}+k-3>0 \text { so } k^{2}-16 k+48<0$ |  | Then as EITHER |
|  | $\mathbf{O R} \frac{\mathrm{d} y}{\mathrm{~d} x}=4 x+k$ | [M1 | M1 for differentiation, equating to zero and obtaining a quadratic equation in $x$ |
|  | When $\frac{\mathrm{d} y}{\mathrm{~d} x}=0, k=-4 x$ <br> By substitution $x^{2}+4 x+3<0$ leading to $x=-1, k=4$ | DM1 | DM1 for attempt to obtain critical values of $k$ from a 3 term quadratic in $x$ followed by substitution to obtain a value for $k$ |
|  | $\begin{aligned} \text { and } x= & -3, k=12 \\ & 4<k<12 \text { or } k>4 \text { and } k<12 \end{aligned}$ | $\begin{gathered} \mathbf{A 1} \\ \mathbf{A 1} \end{gathered}$ | A1 for both critical values A1 for correct final answer |
|  | $\mathbf{O R} \frac{\mathrm{d} y}{\mathrm{~d} x}=4 x+k$ | [M1] | M1 for differentiation, equating to zero and obtaining a quadratic equation in $k$ |
|  | When $\frac{\mathrm{d} y}{\mathrm{~d} x}=0, x=-\frac{k}{4}$ leading to $k^{2}-16 k+48<0$ |  | Then as EITHER |


| Page 6 | Mark Scheme |  | Syllabus ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: |
|  |  |  | 4037 |
| 5 | $\begin{aligned} & 2\left(\frac{15-4 y}{3}\right) y=9 \text { or } 2 x\left(\frac{15-3 x}{4}\right)=9 \\ & 8 y^{2}-30 y+27=0 \text { or } 3 x^{2}-15 x+18=0 \\ & (4 y-9)(2 y-3)=0 \text { or }(x-3)(x-2)=0 \\ & x=2, y=\frac{9}{4} \text { and } x=3, y=\frac{3}{2} \\ & A B^{2}=1^{2}+(0.75)^{2}, A B=1.25 \end{aligned}$ | M1 | M1 for attempt to obtain eqt in one variable |
|  |  | DM1 | DM1 for attempt to solve a 3 term quadratic in that variable |
|  |  | A1, A1 | A1 for each 'pair', $x$ values must be simplified to single integer form |
|  |  | M1, A1 | M1 for a correct attempt to find $A B$, must have non zero differences and be using points calculated previously. |
| 6 | $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \sec ^{2} x$ <br> When $x=\frac{3 \pi}{4}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=6$ $y=5$ | B1 | B1 for $3 \sec ^{2} x$ <br> B1 for $\frac{\mathrm{d} y}{\mathrm{~d} x}=6$, may be implied by <br> later work <br> B1 for $y$ |
|  |  | B1 |  |
|  |  | B1 |  |
|  | $\text { Perpendicular gradient }=-\frac{1}{6}$ | M1 | M1 for perpendicular gradient from $\frac{\mathrm{d} y}{\mathrm{~d} x}$ |
|  | Equation of normal $y+5=-\frac{1}{6}\left(x-\frac{3 \pi}{4}\right)$ | M1 | M1 for attempt at the normal using their $y$ value correctly and $x=\frac{3 \pi}{4}$ and substitution of $x=0$ |
|  | When $x=0, y=\frac{\pi}{8}-5$ o.e. |  |  |
|  | or -4.61 or -4.6 but not -4.60 | A1 | A1 for obtaining $y$ value |



| Page 8 | Mark Scheme <br> GCE O LEVEL - May/June 2013 |  | Syllabus ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: |
|  |  |  | 4037 |
| 9 (i) <br> (ii) | $\begin{aligned} & \left(1+\frac{1}{2} x\right)^{n}=1+n\left(\frac{x}{2}\right)+\frac{n(n-1)}{2}\left(\frac{x}{2}\right)^{2} \\ & (1-x)\left(1+n\left(\frac{x}{2}\right)+\frac{n(n-1)}{2}\left(\frac{x}{2}\right)^{2}\right) \end{aligned}$ <br> Multiply $x$ and $\frac{n}{2} x$ to get $\frac{n}{2}\left(x^{2}\right)$ <br> Multiply 1 and $\frac{n(n-1) x^{2}}{8}$ or $\frac{n(n-1) x^{2}}{4}$ $\begin{aligned} & \frac{n^{2}-n}{8}-\frac{n}{2}=\frac{25}{4} \\ & n^{2}-5 n-50=0 \\ & n=10 \end{aligned}$ | B1, B1 | B1 for $1+$ second term, B1 3rd term Allow unsimplified |
|  |  | M1 | dealing with 2 terms involving $x^{2}$ |
|  |  | DM1 | attempt to obtain one term |
|  |  | DM1 | attempt to obtain a second term |
|  |  |  |  |
|  |  | A1 | correct quadratic equation |
|  |  | A1 | A1 for $n=10$ only |
| $\begin{array}{lll}10 & \text { (a) } & \text { (i) } \\ & & \\ & & \\ & \text { (ii) } \\ & & \\ & \text { (i) }\end{array}$ | $\frac{1}{3}(2 x-5)^{\frac{3}{2}}$ $\frac{125}{3}-\frac{1}{3}=\frac{124}{3}$ <br> Allow awrt 41.3 | B1, B1 | B1 for $k(2 x-5)^{\frac{3}{2}}$, B1 for $\frac{1}{3}(2 x-5)^{\frac{3}{2}}$ |
|  |  | M1, A1 | M1 for correct use of limits |
|  | $x^{3} \frac{1}{x}+3 x^{2} \ln x$ | B1, B1 | B1 for each term, allow unsimplified |
|  | $\int 3 x^{2} \ln x \mathrm{~d} x=x^{3} \ln x-\int x^{2} \mathrm{~d} x \text { o.e. }$ | M1 | for a use of answer to (i) |
|  | $\int x^{2} \mathrm{~d} x=\frac{x^{3}}{3} \text { or }$ | A1 | A1 for intergrating $x^{2}$ or dividing by 3 |
|  | $\int x^{2} \ln x \mathrm{~d} x=\frac{1}{3}\left(x^{3} \ln x-\int x^{2} \mathrm{~d} x\right) \text { o.e. }$ |  |  |
|  | $\int x^{2} \ln x \mathrm{~d} x=\frac{1}{3}\left(x^{3} \ln x-\frac{x^{3}}{3}\right)(+c)$ | A1 |  |



