MARK SCHEME for the October/November 2013 series

4037 ADDITIONAL MATHEMATICS
 4037/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2 Mark Scheme

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Accuracy mark for a correct result or statement independent of method marks.

- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \downarrow implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
$B 2,1,0$ means that the candidate can earn anything from 0 to 2 .

Page 3 Mark Scheme	Syllabus	4037
	GCE O LEVEL - October/November 2013	

Page 5	Mark Scheme	Syllabus
	GCE O LEVEL - October/November 2013	4037

5 (i) $\quad 9 x-\frac{1}{3} \cos 3 x(+c)$ $\text { (ii) } \begin{aligned} & {\left[9 x-\frac{1}{3} \cos 3 x\right]_{\frac{\pi}{9}}^{\pi} } \\ & =\left(9 \pi-\frac{1}{3} \cos 3 \pi\right)-\left(\pi-\frac{1}{3} \cos \frac{\pi}{3}\right) \\ & =8 \pi+\frac{1}{2} \end{aligned}$	B1, B1, B1 [3] M1 A1, A1 [3]	B1 for $9 x$, B1 for $\frac{1}{3}$ or $\cos 3 x$ B1 for $-\frac{1}{3} \cos 3 x$ Condone omission of $+c$ M1 for correct use of limits in their answer to (i) A1 for each term
$6 \quad \mathrm{f}\left(\frac{1}{2}\right)=\frac{a}{8}+1+\frac{b}{2}-2$ leading to $a+4 b-8=0$ $\mathrm{f}(2)=2 \mathrm{f}(-1)$ $8 a+16+2 b-2=2(-a+4-b-2)$ leading to $10 a+4 b+10=0$ or equivalent $\therefore a=-2, b=\frac{5}{2}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { AM1 } \\ & \text { DM1 } \\ & \text { A1 } \end{aligned}$	M1 for substitution of $x=\frac{1}{2}$ into $\mathrm{f}(x)$ A1 for correct equation in any form M1 for attempt to substitute $x=2$ or $x=-1$ into $\mathrm{f}(x)$ and use $\mathrm{f}(2)= \pm 2 \mathrm{f}(-1)$ or $2 \mathrm{f}(2)= \pm \mathrm{f}(-1)$ A1 for a correct equation in any form DM1 (on both previous M marks) for attempt to solve simultaneous equations to obtain either a or b A1 for both correct

Page 6 Mark Scheme GCE O LEVEL - October/November 2013		
7 (a) (i) 360 (ii) 120 (b) (i) 924 (ii) 28 $\begin{aligned} & \text { (iii) } 924-\left({ }^{8} C_{3} \times{ }^{4} C_{3}\right)-\left({ }^{8} C_{2} \times{ }^{4} C_{4}\right) \\ & \text { (i.e. } 924-3 \mathrm{M} 3 \mathrm{~W}-2 \mathrm{M} 4 \mathrm{~W}) \\ & 924-224-28 \\ & =672 \end{aligned}$ Or: $4 \mathrm{M} 2 \mathrm{~W} \quad{ }^{8} C_{4} \times{ }^{4} C_{2}=420$ $\begin{array}{lll} 5 \mathrm{M} 1 \mathrm{~W} & { }^{8} C_{5} \times{ }^{4} C_{1} & =224 \\ 6 \mathrm{M} & { }^{8} C_{6} & =28 \\ & & \\ & \text { Total } & =672 \end{array}$	B1 [1] B1 [1] B1 [1] B1 [1] M1 A1 A1 [3] M1 A1 A1	M1 for 3 terms, at least 2 of which must be correct in terms of C notation or evaluated. A1 for any pair (must be evaluated) A1 for final answer M1 for 3 terms, at least 2 of which must be correct in terms of C notation or evaluated. A1 for any pair (must be evaluated) A1 for final answer
8 (i) (ii) $\left(-\frac{1}{2}, \frac{25}{4}\right)$ (iii) $k>\frac{25}{4}$ or $\frac{25}{4}<k(\leq 14)$	B1 B1 B1 B1 [4] B1, B1 [2] B1 [1]	B1 for correct shape B1 for $(-3,0)$ or -3 seen on graph B1 for $(2,0)$ or 2 seen on graph B1 for $(0,6)$ or 6 seen on graph or in a table B1 for each

9 (a) $12 x^{2} \ln (2 x+1)+4 x^{3}\left(\frac{2}{2 x+1}\right)$
(b) (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(x+2)^{\frac{1}{2}} 2-2 x(x+2)^{-\frac{1}{2}} \frac{1}{2}}{x+2}$

$$
\begin{aligned}
& =\frac{(x+2)^{-\frac{1}{2}}}{(x+2)}(2(x+2)-x) \\
= & \frac{x+4}{(x+2)^{\frac{3}{2}}}
\end{aligned}
$$

Or:
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x\left(-\frac{1}{2}\right)(x+2)^{-\frac{3}{2}}+(x+2)^{-\frac{1}{2}}(2)$

$$
\begin{aligned}
& =(x+2)^{-\frac{3}{2}}(2(x+2)-x) \\
& =\frac{x+4}{(x+2)^{\frac{3}{2}}}
\end{aligned}
$$

(ii) $\frac{10 x}{\sqrt{x+2}}(+c)$
(iii) $\left[\frac{10 x}{\sqrt{x+2}}\right]_{2}^{7}=\frac{70}{3}-\frac{20}{2}$

$$
=\frac{40}{3}
$$

M1 for differentiation of a correct
-1 for each error

M1 for differentiation of a quotient involving $(x+2)^{\frac{1}{2}}$

A1 all correct unsimplified
DM1 for attempt to simplify
A1 for correct simplification to obtain the given answer

M1 for differentiation of a product involving $(x+2)^{-\frac{1}{2}}$

A1 all correct unsimplified DM1 for attempt to simplify A1 for correct simplification to obtain the given answer

M1 for $\frac{1}{5} \times \frac{2 x}{\sqrt{x+2}}$ or $5 \times \frac{2 x}{\sqrt{x+2}}$
A1 correct only, allow unsimplified.
Condone omission of $+c$
M1 for correct application of limits in their answer to (b)(ii)

10 (i) $\sqrt{20}$ or 4.47
(ii) $\quad \operatorname{Grad} A B=\frac{1}{2}, \perp \operatorname{grad}=-2$
\perp line $y-4=-2(x-1)$

$$
(y=-2 x+6)
$$

(iii) Coords of $C(x, y)$ and $B C^{2}=20$ $(x-1)^{2}+(y-4)^{2}=20$ or Coords of $C(x, y)$ and $A C^{2}=40$ $(x+3)^{2}+(y-2)^{2}=40$

Need intersection with $y=-2 x+6$,

$$
\text { leads to } 5 x^{2}-10 x-15=0 \text { or }
$$ $5 y^{2}-40 y-=0$

giving $\quad x=3,-1$ and $y=0,8$

Or, using vector approach:
$\overrightarrow{\mathrm{AB}}=\binom{4}{2}$
$\overrightarrow{\mathrm{OC}}=\binom{1}{4}+\binom{-2}{4}=\binom{-1}{8}$
$\overrightarrow{\mathrm{OC}}=\binom{1}{4}+\binom{2}{-4}=\binom{3}{0}$

M1 for attempt at a perp gradient
M1 for attempt at straight line equation, must be perpendicular and passing through B.
A1 allow unsimplified
M1 for attempt to obtain relationship using an appropriate length and the point $(1,4)$ or $(-3,2)$
A1 for a correct equation
DM1 for attempt to solve with $y=-2 x+6$ and obtain a quadratic equation in terms of one variable only

M1 for attempt to solve quadratic
A1 for each 'pair'

May be implied

M1 for correct approach
A1 for each element correct
A1 for each element correct

12 (a)
(i) $\mathrm{f}(-10)=299, \mathrm{f}(8)=191$
Min point at $(0,-1)$ or when $y=-1$
\therefore range $-1 \leq y \leq 299$
(ii) $\quad x \geq 0$ or equivalent
(b) (i) $\mathrm{g}^{-1}(x)=\ln \left(\frac{x+2}{4}\right)$
or $\frac{\lg \left(\frac{x+2}{4}\right)}{\lg e}$
(ii) $\operatorname{gh}(x)=\mathrm{g}(\ln 5 x)$
$20 x-2=18, x=1$

Or $h(x)=g^{-1}(18)$

$$
\ln 5 x=\ln 5
$$

leading to $x=1$

M1 for substitution of either $x=$ $x=8$, may be seen on diagram B1 May be implied from final answer, be seen on diagram
Must have \leq for A1, do not allow x

Allow any domain which will make f a one-one function Assume upper and lower bound when necessary.

M1 for complete method to find the form inverse function, must involve \ln or \lg if appropriate. May still be in terms of y.

A1 must be in terms of x

M1 for correct order
A1 for correct expression $4 \mathrm{e}^{\ln 5 x}-2$
A1 for correct solution from correct working

M1 for correct order
A1 for correct equation
A1 for correct solution from correct working

