CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

www.papacanbridge.com MARK SCHEME for the October/November 2013 series

4037 ADDITIONAL MATHEMATICS

4037/13

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

			V.
Page 2	Mark Scheme	Syllabus 🔪	· A
	GCE O LEVEL – October/November 2013	4037	12

Mark Scheme Notes

Marks are of the following three types:

- cambridge.com Method mark, awarded for a valid method applied to the problem. Method marks are not los Μ for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.

When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

					Mary Mary
	Page 3	Mark Sch			Syllabus
		GCE O LEVEL – Octob	er/Novembe	er 2013	4037 230
1	(i) ${}^{6}C_{2}(2^{4})(p^{2}) = p = \frac{1}{2}$	$(px)^2 \text{ or } \begin{pmatrix} 6\\2 \end{pmatrix} 2^4 (px)^2$ = 60	B1 M1 A1 [3]		Syllabus r 4037 4037 mplied, unsimplified $x^2 = 60$ and attemption
		nts of the terms needed (2) ⁵ $p + (3 \times 60)$	M1 B1		ealising that 2 terms are involved -1) ${}^{6}C_{1}(2)^{5} p$ or -192p, using their p.
	= 84	(2) p + (3 × 00)	A1 [3]		() O ₁ (2) p or 152p, comp and p.
2	$\lg \frac{y^2}{5y+6}$	$\frac{1}{10} = 1g10$	B1 B1		$lg y = lg y^{2}$ = lg10 or equivalent, allow when seen
	$\mathbf{Or} \lg y^2 = \lg t$	10 (5 <i>y</i> + 60)	M1		se of $\log A - \log B = \log A/B$ - $\log B = \log AB$
	•	-600 = 0 to $y = -10, 60$ be positive so $y = 60$	DM1 A1 [5]	and an att	forming a 3 term quadratic equation tempt to solve y = 60 only

Page 4	Mark So			Syllabus
	GCE O LEVEL – Octo	ber/Novemb	er 2013	4037 23
$\tan^2\theta - \sin^2\theta$	$\theta = \frac{\sin^2 \theta}{\cos^2 \theta} - \sin^2 \theta$		a comple	Syllabus 4037 The awarded only if they can te proof for the methods oth two below ealing with tan and a fraction
	$=\frac{\sin^2\theta-\sin^2\theta\cos^2\theta}{\cos^2\theta}$	M1	M1 for de	ealing with tan and a fraction
	$=\frac{\sin^2\theta\left(1-\cos^2\theta\right)}{\cos^2\theta}$	M1	M1 for fa	ctorising
	$=\frac{\sin^4\theta}{\cos^2\theta}$	M1	M1 for us	se of identity $\cos^2 \theta + \sin^2 \theta =$
	$=\sin^4\theta\sec^2\theta$	A1 [4]	A1 for all	correct
solution 1				
$\log \tan^2 \theta = \sin^2 \theta$	$\theta \sec^2 \theta$			
	$\sec^2 \theta - \sin^2 \theta$	M1		$f \tan^2 x = \sin^2 x \sec^2 x$
$= \sin^2 \theta$ $= \sin^2 \theta$	$(\sec^2 \theta - 1)$ $\tan^2 \theta$	M1 M1	M1 for fa M1 for us	ctorising se of identity
$=\sin^4 \ell$		A1	A1 for all	-
solution 2				
RHS = $\sin^4 \theta$	$\sec^2 \theta$			
$=\frac{\sin^2\theta}{\cos^2\theta}$	$\frac{1}{2} \frac{1}{2} \frac{1}$	M1	M1 for sp	plitting $\sin^4 \theta$ and use of identi
$=\frac{\sin^2\theta}{\theta}$	$\frac{\left(1-\cos^2\theta\right)}{\cos^2\theta}$	M1	M1 for m	ultiplication
	$\frac{1-\sin^2\theta\cos^2\theta}{\cos^2\theta}$	M1	M1 for w	riting as two terms and cancel
$=\frac{\sin^2\theta}{\cos^2\theta}$	$\frac{\partial}{\partial \theta} - \frac{\sin^2 \theta \cos^2 \theta}{\cos^2 \theta}$	A1	A1 for all	correct
$\cos^2 \theta$	$\frac{-\frac{\sin^2\theta\cos^2\theta}{\cos^2\theta}}{-\sin^2\theta}$	A1	A1 for all	correct

				422	
Page 5	Mark Sche	eme		Syllabus Syllabus	7
	GCE O LEVEL – Octobe	r/Novembe	er 2013	4037]
4 (i) $\frac{dy}{dx} = \frac{(x+x)^2}{(x+x)^2}$	$(x+3)^2 2e^{2x} - e^{2x}2(x+3)$ $(x+3)^4$	M1	M1 for att	Syllabus 4037 empt at quotient rule h error onvinced of correct simplification p(n + 2, -1) or $(n + 2)(n + 2)$	ix
		A2, 1, 0	-1 for each	h error	90
$=\frac{2e^2}{(x)}$	$(x+2)^{(x+2)}, A=2$	A1		onvinced of correct simplification of $(x + 3 - 1)$ or $(x + 2)(x + 3)$	
Alt solution		[4]	c.g. signt ($\int (x + 3 - 1) \int (x + 2)(x + 3)$	
	(-2)=3 $(-2)=2$				
$\frac{dy}{dx} = e^{2x} \left(-2\right)$	$(x+3)^{-3} + 2e^{2x}(x+3)^{-2}$	M1		empt at product rule	
$2e^{2x}$	2)	A2,1,0	-1 for each	h error	
$=\frac{2e^{2x}\left(x+\frac{1}{x+3}\right)}{x+3}$	$(\frac{2}{3}), A = 2$	A1		onvinced of correct simplification of $(x + 3 - 1)$ or $(x + 2)(x + 3)$	
(ii) $x = -2, y$	$= e^{-4}$	B1, B1 [2]	Accept 1/e	24	
5 (i) $f^{2}(x) = f$	$(2x^3)$				
=2	$2(2x^3)^3$ or $2\left(2\left(\frac{1}{2}\right)^3\right)^3$	M1	M1 for $=$	$2(2x^3)^3$ or $2\left(2\left(\frac{1}{2}\right)^3\right)^3$	
=	2 ⁻⁵	A1	For 2 ⁻⁵ only	y	
		[2]			
lt method					
$f\left(\frac{1}{2}\right) = \frac{1}{4}$	$f\left(\frac{1}{4}\right) = 2^{-5}$	M1	M1 for f o	f their f $\left(\frac{1}{2}\right)$	
(2) 7		A1	For 2 ⁻⁵ only	(-)	
(ii) $f'(x) = g$ $6x^2 = 4 - 4$	(x) 10x	B1 B1	B1 for $6x^2$ B1 for 4 –		
Leading	to $(3x-1)(x+2) = 0$	M1		lution of quadratic equation obtained	1
$x = \frac{1}{3}, -2$	2	A1 [4]	A1 for bot	rentiation of both h	

Page 6	Mark Scheme GCE O LEVEL – October/Novembe		er 2013	Syllabus 4037
Area under the	e curve:			Came
$\int_{0}^{\sqrt{2}} 4 - x^2 \mathrm{d}x = \left[\right]$	$\left[4x - \frac{x^3}{3}\right]_0^{\sqrt{2}}$	M1 A1	M1 for at	Syllabus 4037 tempt to integrate
=	$=\left(4\sqrt{2}-\frac{2\sqrt{2}}{3}\right)-(0)$	DM1	DM1 for	application of limits
=	$=\frac{10\sqrt{2}}{3}$			
Area of trapez	ium =			
$\frac{1}{2}(4+2)(\sqrt{2})=$	$=3\sqrt{2}$	B1	B1 for are	ea of trapezium, allow unsimplified
Shaded area =	$\frac{10\sqrt{2}}{3} - 3\sqrt{2}$	M1	M1 for su	btraction of the two areas
Shaded area =	$\frac{\sqrt{2}}{3}$	A1 [6]	Must be i	n this form
Or : Equation of ch	ord:			
$y = 4 - \sqrt{2x}$		B1	B1 for the	e equation of the chord unsimplifie
Shaded area =	$\int_{0}^{\sqrt{2}} 4 - x^2 - 4 + \sqrt{2}x \mathrm{d}x$	M1 M1	M1 for su M1 for at	btraction tempt to integrate
$\left[\frac{\sqrt{2}}{2}x^2 - \frac{x^3}{3}\right]$	$\sqrt{2} = \frac{\sqrt{2}}{3}$	√A1	$\sqrt{A1}$ for $\left[-\frac{1}{2} \right]$	$-m\frac{x^2}{2}-\frac{x^3}{3}$] or equivalent, where
	~	DM1 A1 [6]		radient of their chord application of limits

Page 7		ge 7		Mark Scheme O LEVEL – October/November 2013		Syllabus 4037	
7	(i)	$2t^2 - 2(t^2)$	- <i>t</i> + 1)	B1	Correct de	eterminant seen unsimplifie	
		Leading to	$t_{0}, t = \frac{3}{2}$	M1 A1 [3]		Syllabus 4037 eterminant seen unsimplific inplification and solution ution of det A=1only, not 1/det A=1	
	(ii)	$\mathbf{A} = \begin{pmatrix} 6 & 2 \\ 7 & 2 \end{pmatrix}$	$\binom{2}{3}, \mathbf{A}^{-1} = \frac{1}{4} \begin{pmatrix} 3 & -2 \\ -7 & 6 \end{pmatrix}$	B1, B1	B1 for $\frac{1}{4}$,	B1 for matrix	
		$\begin{pmatrix} 6 & 2 \\ 7 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$		B1	B1 for dea	ling correctly with the factor of 2	
		$\binom{x}{y} = \frac{1}{4} \left(\frac{x}{x} \right)$	$\begin{pmatrix} 3 & -2 \\ -7 & 6 \end{pmatrix} \begin{pmatrix} 10 \\ 11 \end{pmatrix}$	M1		e-multiplying their $\begin{pmatrix} 10\\11 \end{pmatrix}$ by their	
		$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$), leading to $x = 2, y = -1$	A1 [5]		ain a column matrix	
3	(i)	$\frac{1}{2}(4^2)\sin^2\theta$	$\theta = 7.5$	M1	M1 for att and equate	empt to find the area of the triangle e to 7.5	
		$\sin\theta = \frac{15}{16}$	$\theta = 1.215$	A1 [2]		ution to obtain the given answer nust include 1.2153 or 1.2154	
	(ii)	$\sin\frac{\theta}{2} = \frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{CD}{4}$, (CD = 4.567)	M1	M1 for att	empt to find <i>CD</i>	
		Arc length	n = 6(1.215)	B1	B1 for arc	length	
		Perimeter	= 2 + 2 + 6(1.215) + their <i>CD</i>	M1	M1 for su	m of 4 appropriate lengths	
			= awrt 15.9	A1 [4]			
	(iii)	Area = $\frac{1}{2}$	$6^{2}(1.215) - 7.5$	B1 M1	B1 for sec M1 for sul	tor area btraction of the 2 areas	
		= 14	.4 (awrt)	A1 [3]			

Page 8	Mark Sch	eme		Syllabus Syllabus
		LEVEL – October/November 2013 4037		
6 co	$-\cos^{2} x) = 5 + \cos x$ $s^{2} x + \cos x - 1 = 0$ $\cos x - 1) (2 \cos x + 1) = 0$	M1 M1	M1 for sol	Syllabus 4037 e of $\sin^2 x = (1 - \cos^2 x)$ cont lution of a 3 term quadratic in pt at solution of a trig equation ch correct solution
x = 7	$70.5^{\circ} \qquad x = 120^{\circ}$	A1, A1 [4]	A1 for eac	ch correct solution
(ii) cos :	$x = \sin y$			
sin y	$v = \frac{1}{3}$ only so	DM1		relating $\cos x$ and $\sin y$ or other ethod of solution
y	e = 19.5°, 160.5°	√A1, √A1 [3]	concerne	
(b) cot <i>z</i> (4 c	(z-3) = 0	M1	M1 for att	cempt to use a factor
$\cot z=0,$	$z = \frac{\pi}{2}$	B1	B1 for $\frac{\pi}{2}$	(1.57)
$\cot z = \frac{3}{4}$, $\tan z = \frac{4}{3}$ so $z = 0.927$	M1 A1 [4]	M1 dealin	g with cot and attempt at solution
1 0 (i) lg <i>s</i>		B1 [1]	Allow in t	able or on graph if no contradiction
			<u>No marks</u> <u>ln<i>t</i> against</u>	for graph unless lgt against lgs (or t lns)
(ii) <u>lgs</u> <u>lgt</u>	0.3 0.6 0.78 0.9 1.4 0.8 0.44 0.19	M1 DM1 A1 [3]	DM1 for a A1 all poin	or more points correct a line through 3 or 4 correct points nts correct with a straight line at least from first point to last point
graph is u	s in this part unless $lgt v lgs$ used : $n = -2$ (allow $-2.1 \rightarrow -1.9$)	M1A1	M1 calcular A1 for $n =$	ates gradient = -2
Intercept $k = 100$: log k, or other method (allow $90 \rightarrow 120$)	M1, A1 [4]		e of intercept and dealing with correctly (can use another point)
It method sing simultaneou e on the plotted li	s equations, points used must ne.	M2 A1, A1	Must atten $k = 100$ and	mpt to solve 2 valid equations. and $n = -2$
	4, $\lg t = 0.6$ so $\lg s = 0.69$ (allow $4.8 \rightarrow 5.2$)	M1 A1 [2]		lid method using either the correct using $lgt = nlgs + lgk$ or $t = ks^n$ using their k

Pa	ge 9		ark Scheme		Syllabus 2
		GCE O LEVEL -	- October/Novemb	er 2013	4037 232
1 (i)	$\left[e^{2x}+\frac{5}{4}e^{2x}+\frac{5}{4}e^{2x}\right]$	$e^{-2x} \bigg]_0^k$	B1, B1	B1 for ea unsimplif	Syllabus 4037 ch term integrated correctly, an fied oplication of limits to an integral of
	$\left(e^{2k}+\frac{5}{4}e^{2k}\right)$	$e^{-2k}\left(1+\frac{5}{4}\right)=3$	M1		oplication of limits to an integral of $Ae^{2x} \pm Be^{-2x}$
	$e^{2k} + \frac{5}{4}e^{-k}$	$\frac{2k}{4} - \frac{12}{4} = 0$	M1		quating to $\frac{3}{4}$ and attempt to rearrange
					a 3 term equation. Must be using an f the form $Ae^{2x} \pm Be^{-2x}$
	$4e^{4k} - 12e^{4k}$	$e^{2k} + 5 = 0$	A1 [5]	Answer g	given, so must be convinced
(ii)	$4y^2 - 12y$	+ 5 =0	M1	M1 for sc	olution of quadratic equation
	leading to	$e^{2k} = \frac{5}{2}, e^{2k} = \frac{1}{2}$	M1	M1 for so	olving equations involving
	k = 0.458	, -0.347	A1, A1 [4]	A1 for ea	