

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

ADDITIONAL MATHEMATICS

Paper 2 SPECIMEN MARK SCHEME 4037/02 For Examination from 2013

2 hours

MAXIMUM MARK: 80

This document consists of 6 printed pages.

Mark Scheme Notes

Marks are of the following three types:

- www.papaCambridge.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numer errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks А cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from . previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.

3

The following abbreviations may be used in a mark scheme or used on the scripts:

- www.papacambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA -1 This is deducted from A or B marks in the case of premature approximation.
- S-1Occasionally used for persistent slackness – usually discussed at a meeting.
- EX 1Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

		44	
	4	N. Dab	
1	$\mathbf{A}^{-1} = \frac{1}{10} \begin{pmatrix} 4 & -6 \\ -7 & 13 \end{pmatrix}$	B1+B1	Cambridge.com
	evaluate $\mathbf{A}^{-1} \begin{pmatrix} 41 \\ 24 \end{pmatrix}$	M1	Se.co.
	x = 2, y = 2.5	A1	[4]
2	$ \begin{array}{c} k(2x-9)^2 \\ 6(2x-9)^2 \end{array} $	M1 A1	
	substitute $x = 7$ and $\frac{dx}{dt} = 4$ into $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$	M1	
	$dt \qquad dt \qquad dx \qquad dt$ 600	A1	[4]
3	eliminate y use $b^2 - 4ac$ $m^2 + 10m - 39 * 0$ factorise 3 term quadratic in m or take square root -13 < m < 3	M1 DM1 A1 M1 A1	[5]
4	(a) 10, 3 and 15 multiply 3 values 450	B1 M1 A1	
	(b) $4 \times (5 \times 4 \times 3)$ 240	B1+B1 B1	[6]
5	(i) $\frac{d}{dx}(\ln x) = \frac{1}{x}$ $1 + \ln x$	B1 B1	
	(ii) $\int (1 + \ln x) dx = x \ln x (+c)$	M1	
	$\int \ln x \mathrm{d}x = x \ln x - \int \mathrm{d}x (+c)$	M1	
	$x \ln x - x (+c)$	A1	[5]
6	(i) express as powers of 2 (or 4 or 8) applies rules of indices $[2x - (5 - x) = 4x - 3(x - 3)]$ 7	M1 DM1 A1	
	(ii) $\lg (2y + 10) + \lg y = \lg \{y(2y + 10)\}$ or $2 = \lg 100$ $2y^2 + 10y = 100$ or 5 only	B1 B1 B1	[6]

	6	A.D.	
l0 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 16x + 16$	MMM, ABARCO B1 M1 A1 AG A1	mb.
	equate to 0 and solve 3 term quadratic x = 4, y = 0	M1 A1 AG	TIE
	$x = \frac{4}{3}y = 9\frac{13}{27}$ or $\frac{256}{27}$ or 9.48 or 9.5	A1	
(ii)	integrate	M1	
	$\frac{x^4}{4} - \frac{8x^3}{3} + 8x^2$	A1	
	use limits of 4 (and 0)	DM1	
	$21\frac{1}{3}$ or 21.3	A1	[8]
1 (i)	plot xy against $1/x$ with linear scales xy 4.5 3.24 2.82 2.64	M1	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A2, 1, 0	
(ii)	attempt at gradient using plotted points	DM1	
	5 ± 0.2 intercept 2 ± 0.1	A1 B1	
	(or A1 if calculated from $y = mx + c$)		
	use $Y = mX + c$ in correct way	M1	
	$y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5+2x}{x^2}$ or $y = \frac{1}{x}\left(\frac{5}{x} + 2\right)$	A1√	
(iii) read from graph or substitute in formula to find x	M1	
	$x = 2.5 \pm 0.2$ $y = 1.6 \pm 0.1$	A1 A1	[11]
2	·		
(i)	$\frac{OC}{2} = \cos 0.6 \text{ or } OC = 2 \cos 0.6 \text{ or } \frac{OC}{\sin 0.97} = \frac{2}{\sin \frac{\pi}{2}}$	M1	
	1.65	A1	
	$CD = 2 \sin 0.6$ or $CD = \sqrt{OD^2 - OC^2}$	M1	
	1.13	A1	
(ii)	6×0.6	B1	
	complete plan $CD + 4 + r\theta + (6 - 1.65)$ 13.1	M1 A1	
(iii	$\frac{1}{2} \times 6^2 \times 0.6$	B1	
	complete plan $\frac{1}{2}r^2\theta - \frac{1}{2} \times OC \times CD$	M1	
	9.87		