MARK SCHEME for the May／June 2013 series

5054 PHYSICS

5054／21
Paper 2 （Theory），maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．

Cambridge is publishing the mark schemes for the May／June 2013 series for most IGCSE，GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components．
Page 2

Section A

1 (a) 11 cm
(b) (graph is) a straight line/linear or has constant gradient or not curved
(c) (i) change in speed/velocity M1 same change in uniform/same time or in 1 s A1
(ii) 1. 0.8 N B 1
$\begin{array}{ll}\text { 2. (a=) } F / m \text { algebraic or numerical e.g. } F=m a ; 0.8 / 0.2 & \mathrm{C} 1 \\ \begin{array}{ll}\text { (ecf } 1 . \text { but not if } F=0) & \\ 4(.0) \mathrm{m} / \mathrm{s}^{2} & \mathrm{~A} 1\end{array}\end{array}$

2 (a) total/resultant moment zero or (sum of) clockwise $=$ anticlockwise moment \quad B1
(b) $F_{1} d_{1}$ or $F_{2} d_{2}$ seen in any form C1

8(.0) N
A1
(c) $4+1.2$ or 5.2 seen
C1
$2.8 \mathrm{~N} \operatorname{ecf}(b)$ i.e. accept $5.2-(b)$ or (b) -5.2 A1

3 (a) Q and R
(b) $\rho g h$ in any form, algebraic or numerical C1
$1.0(336) \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ A1
$\begin{array}{ll}\text { (c) water is less dense or has density } 1000\left(\mathrm{~kg} / \mathrm{m}^{3}\right) \\ \text { water further up tube/fills tube or height greater or water enters pump or water } \\ \text { boils } & \text { B1 } \\ \text { B1 }\end{array}$

4 (a) (i) $120^{\circ} \mathrm{C}$ or -10 to $110^{\circ} \mathrm{C}$
$\begin{array}{ll}\text { (ii) } \begin{array}{l}\text { same distance/length (on scale) for a temperature rise (along scale) or } \\ \text { regular intervals/equal divisions (ign. numbers equally spaced) }\end{array} & \text { B1 }\end{array}$
(iii) diagram with any two markings further apart and none less
(b) resistance (of metal); e.m.f./voltage/current/p.d. (of thermocouple); pressure of gas;
colour; quantity of radiation (ign. radiation) etc.

Page 3	Mark Scheme	Syllabus
	GCE O LEVEL - May/June 2013	5054

5 (a) critical angle
(b) (i) light refracted out into air and bent away from normal (ignore reflected ray)
(ii) correct internal reflection (by eye) and no refracted ray (not at 90°)
$\begin{array}{ll}\text { (c) } \begin{array}{ll}(t=) \\ 2.5 \times 10^{-10} \mathrm{~s}\end{array} & \mathrm{C} \text { distance/speed in any form numerical or algebraic (e.g. d/s, s/v } 10 / 2 \times 10^{8} \text {) } \\ \text { A1 }\end{array}$

6 (a) current is directly proportional to voltage (accept voltage/current = constant, but not just = R)
if temperature/physical conditions constant
(b) ($R=$) V/I in any form algebraic or using any value of V and I from graph
20Ω
(c) (i) 40Ω or $2 \times$ (b)
(ii) straight line graph through origin below given line ecf (b) (e.g. accept above line if $R<20$) goes through 0.1 A at 4 V ecf (b) (e.g. allow through 0.2 A at 2 V if $\mathrm{R}=10 \Omega$)

7 (a) correct symbol for thermistor
in series circuit with any power supply (e.g. cell or two circles) and a fixed resistor
(b) (i) $\begin{array}{ll}12(\mathrm{~V}) & \mathrm{B} 1 \\ & 0.018(\mathrm{~A})\end{array} \mathrm{B} 1$
(ii) $(P=) V I$ in any form algebraic or numerical with any voltage (4, 8 or 12)

$$
0.14(4) \mathrm{W}
$$

(iii) above maximum power or gets too hot or blows up or fails
(b) magnetic field or flux or flux/magnetic lines mentioned
changing magnetic field or changing flux or flux lines cut coil B1
induced voltage/current/e.m.f. B1
(c) less power/energy/heat loss (allow no power loss/to prevent power loss) or more efficient or thinner wire can be used (ign. cheaper)

Page 4	Mark Scheme	Syllabus
	GCE O LEVEL - May/June 2013	5054

Section B

9 (a) (i) mass is the amount of matter/substance or to resist (change in) motion or (measurement of)inertia
weight is the pull/force of gravity or pull of Earth
accept $m g$ where g stated as $10(\mathrm{~N} / \mathrm{kg})$ or grav. field strength or acc. due to gravity
ignore $m g$ where g is gravity or grav. force or undefined
(ii) mgh algebraic or numerical C1

1200 J
(iii) $1 / 2 m v^{2}$ algebraic or numerical C1
(speed $=$) $9 / 12$ or 0.75 seen A1
$5.6(25) \mathrm{J}$ A1
(iv) ($E=$) VIt algebraic or numerical C1

4100 J or 4140 J A1
$\begin{array}{ll}\text { (v) 1. energy can neither be created or destroyed/lost } & \text { B1 } \\ \text { (but) may change form / be transferred } & \text { B1 }\end{array}$
2. electrical energy changes to P.E. (and K.E. and heat/work against friction; ign. mechanical energy)
(b) (i) will not run out or infinite or being replaced (allow does not finish/always available)
(ign. cannot be reused/recycled)
(ii) wind, tidal, solar/Sun, geothermal, hydroelectric, biomass, waves, wood (not nuclear)
(allow biogas/biofuel e.g. cane into petrol, dung into gas etc.) (ign. tidal waves)
(ii) $80 / 1000$ or 0.08 seen (e.g. $0.08 \times 24 \times 25$) C1

168 or 24×7 (hours) seen (e.g. $0.08 \times 24 \times 7 \times 25$)
C1
336 c or 340 c (accept $\$ 3.36$ or any other e.g. £, R) A1
(b) (i) $m c T$ algebraic or numerical C 1
conversion of mass to g seen, e.g. 1500 used or shc used as 4200 C1
$1.6 \times 10^{5} \mathrm{~J}$ or $1.58 \times 10^{5} \mathrm{~J}$ or 157500 J (allow $157(.5) \mathrm{J}$ to score $2 / 3$) A1
(ii) $(m=) E / L$ in any form numerical or algebraic e.g. $157500 / 3.3 \times 10^{5} \quad$ C1
0.48 or 0.477 kg e.c.f. (i)

(iv) nothing/no change and increases
[Total: 15]
11 (a) (i) 6 protons B1
8 neutrons B1
6 electrons outside nucleus or 6 electrons and protons \& neutrons inside nucleus B1
(ii) different number of neutrons B1
same number of protons (ignore electrons) B1
(b) (i) 2 half lives seen e.g. $8 \rightarrow 4 \rightarrow 2$ C1
number of carbon atoms 2×10^{20} A1
number of nitrogen atoms 6×10^{20} or $\left(8 \times 10^{20}-N_{C}\right)$ atoms B1
(ii) many half lives or has decayed (too much) or very few atoms (of C) left B1
(c) (i) background count/rate taken without source B1
any count taken over any measured time e.g. 1 minute or any rate determined (allow read ratemeter) B1
take count/rate with aluminium between source and detector B1
at 5 mm count/rate goes to background/constant/zero when corrected for background B1
(ii) for protection (of the class/teacher e.g. to avoid cancer) or gamma-rays cannot pass through or to stop particles (hitting class/teacher) (ign. just "for safety")
(iii) gamma-rays not stopped by/pass through ($5-10 \mathrm{~mm}$) aluminium

