

CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2013 series

5054 PHYSICS

5054/22

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Ρ	age		rk Scheme	Syllabus	· ~ ~ ~	
		GCE O LEVE	EL – May/June 2013	5054	Day.	
			Section A		- 21	76.
(a) tra	vels further in each second	/ in same time / between i	mages	В1	10
(b		:) <i>dlt</i> in any form algebraic o cm/s; 0.4(0) m/s	or numerical		MM. PapaCall. B1 C1 A1	
(c		resistance increases ight constant			B1 B1	
(d	or	ces balance /cancel no resultant/net force resultant of any two forces e	equal and opposite to third	I	B1	[6]
(a	,	ce × distance rpendicular distance			M1 A1	
(b) (i)	<i>T</i> × 8 or 2000 × 2 seen 500 N			C1 A1	
	(ii)	(two forces) equal (in mag (two forces) opposite (in d			B1 B1	[6]
(a) (i)	(<i>W</i> =) <i>Fd</i> or 90 × 0.3 or 90 × 30			C1	
		27 J			A1	
	(ii)	(<i>P</i> =) <i>W</i> / <i>t</i> or <i>Fd</i> / <i>t</i> or 27(× 20)/60 or 27/3			C1	
		9(.0) W			A1	
(b) (i)	800 × 30/180 or 800/6 or 6 seen or proportionality clearly u	sed		C1	
			1960 1		Λ 4	
	(ii)	133 or 130 cm extension more than 143 c or (some) extension perm		10 cm	A1 B1	[7]

		Mark Scheme Syllabus GCE O LEVEL – May/June 2013 5054 rays, visible light, infra-red rowaves Ilite (receives and) sends/transmits/emits/boosts/amplifies signal		
Page	3	Mark Scheme Syllabus	Y	
		GCE O LEVEL – May/June 2013 5054	S.	1
(a) ga	amma r	rays, visible light, infra-red	1	300
(b) (i)) micr	owaves	B1	1
	•	lite (reasives and) conde/transmite/emite/heasts/emplifies signal	D1	
(ii)	-			
(iii)	or u	er a large area over the horizon / only one (transmitter/station) needed etc. naffected by tall buildings/hills o obstructions	B1	[4
(a) <u>el</u>	ectrons	s move onto polythene / rod	B1	
el	ectrons	s/negative charge move off cloth	B1	
(1.) (:			
(b) (re	egion o	of space) where force is exerted on a charge	B1	
(c) (i)) unlik	ke charges attract	B1	
	or (r	rod) attracts +ve charge/ions/particles		
		els like charge rod) repels –ve charge/ions/electrons/particles	B1	
(ii)) (net)) positive charge on water near rod	B1	[6
(a) (i)		2.1 (V) to any value between 11 and 12 (V) bove 2/2.1(V)	B1	
(ii)) temp	perature increases / gets hotter	B1	
(b) (i)) (rate	e of) flow of charge/electrons	B1	
(ii)		A cao	B1	
	•	V/R algebraic	C1	
(11)	or 6			
		0) (A)	C1	
		$/R_{T} = 1/20 + 1/17.1$ $R_{T} = 0.2 (\Omega)$ seen		
	0.65		A1	[7
	0.00		<i>i</i> 11	11

Page 4	Mark Scheme	Syllabus	S. V	
	GCE O LEVEL – May/June 2013	5054	Pac.	$\mathbf{\vee}$
	le through or near A centered on or near X e arrow on line(s) around X and none wrong		Papacan. B1	10Tion
(b) field s (du	ue to X and Y) cancel or X and Y fields equal and c	opposite	B1	
	e left owards X/A/B		B1	
	<u>ent</u> (in wire Y) and (magnetic) <u>field</u> (caused by othe wo (magnetic) fields interact	ər wire)	B1	[5]
EITHER				
(a) steel / m	agnadur / alnico / magnetite		B1	
(b) (i) men	tion of cutting (lines of) magnetic field / change in ((magnetic) flux	M1	
or fa	at(est) rate of change ast(est) cutting ther explanation involving time		A1	
or tu	ical/upright urned through 90° ormal to (magnetic) field		B1	
OR				
(a) NOT (ga or inverte			B1	
(b) 1,0			B1	
(c) (i) (volt	age across R ₁) <u>becomes</u> 0/low		B1	
(ii) decr	rease any of R_{1} , R_{2} , C_{1} , C_{2}		B1	[4
			[Total:	

Pa	ge 5	5 Mark Scheme Syllabus	·A.	
		GCE O LEVEL – May/June 2013 5054	Pac	1
		Section B	3	76
(a)	(air)) molecules hit walls / liquid (surface)	MN, Babacar B1 B1	10
	(air)) molecules move fast(er) /great(er) <u>kinetic</u> energy	B1	
	• •	[.]) molecules hit <u>more</u> often/ <u>more</u> frequently/ <u>greater</u> rate / hard <u>er</u> / <u>more</u> for (liquid) molecules evaporate	rce B1	[3]
(b)	(i)	(flask) <u>in</u> (pure) <u>melting</u> ice (and water)	B1	
		(flask) <u>in</u> (pure) boiling water / above boiling water (at one atmosphere)	B1	
	(ii)	thin(ner) tube or large(r) flask or more air/less liquid or use liquid that expands more (1 mark for each)	B2	
((iii)	divisions not equally spaced or scale not uniform/not proportional	C1	
		different distance (along scale) for same temperature rise or different change in temperature for same distance (along scale)	A1	[6]
(c)	(i)	(<i>M</i> =) $d \times V$ in any form or $1200 \times 5 \times 10^{-5} \times 0.15$	C1	
		$9(.0) \times 10^{-3}$ kg; 0.009(0) kg	A1	
	(ii)	0.09(0) N ecf (i)	B1	
	(iii)	(<i>P</i> =) <i>hdg</i> in any form or (<i>P</i> =) <i>F</i> / <i>A</i> in any form	C1	
		1800 Pa	A1	[5]
(d)		uids expand less (than air) great(er) forces between liquid molecules	B1	[1]
			[Tota	l: 15
(a)	corr	rect normal by eye rect angle of incidence between candidate's normal and incident ray rect angle of refraction marked between candidate's normal and BC	B1 B1 B1	[3
		crease / change in speed / wavelength	B1	[1

GCE O LEVEL – May/June 20135054 $n = \sin i/isin r seen in any form(sin r =) sin 45°/1.5C1(sin r =) sin 45°/1.5or 0.47(14) seenC128(.1)°C1[G]) refracts less at first face and on correct side of normalB1refraction at second face away from normal so that red ray and blue ray aredivergingB1(i) angle of incidence is 0or ray along normal/perpendicular to glassB1(ii) angle of incidence///is larger than critical angletotal internal reflection occursB1(iii) reflected ray drawn correctly and emerging without refraction from blockB1(iv) (eventually) light emerges (into air at Q)or (weak) refracts (out at Q)or correct description of movement of reflected ray (as \theta decreases)B1(i) (P=)VI in any formor 4.2 × 1250(.4) WC1C1(ii) (E=) Pt i.e. any power × any time e.g. 50(.4) × 8C18/60or division by 1000 seen anywhereC1$	Page 6	Mark Scheme Syllabus	TA OF	
) refracts less at first face and on correct side of normalB1refraction at second face away from normal so that red ray and blue ray are divergingB1[2](i) angle of incidence is 0 or ray along normal/perpendicular to glassB1[3](ii) angle of incidence/ θ is larger than critical angle total internal reflection occursB1[3](iii) reflected ray drawn correctly and emerging without refraction from blockB1[4](iv) (eventually) light emerges (into air at Q) or (light refracts (out at Q) or (weak) refracted ray appears light emerging at Q coloured in some way or correct description of movement of reflected ray (as θ decreases)[6](iv) ($P=$)/VI in any form or 4.2 × 12 50(.4) WC1[7](iii) ($E=$) Pt i.e. any power × any time e.g. 50(.4) × 8C1 $8/60$ or division by 1000 seen anywhereC1		GCE O LEVEL – May/June 2013 5054	Share a	
) refracts less at first face and on correct side of normalB1refraction at second face away from normal so that red ray and blue ray are divergingB1[2](i) angle of incidence is 0 or ray along normal/perpendicular to glassB1[3](ii) angle of incidence/ θ is larger than critical angle total internal reflection occursB1[3](iii) reflected ray drawn correctly and emerging without refraction from blockB1[4](iv) (eventually) light emerges (into air at Q) or (light refracts (out at Q) or (weak) refracted ray appears light emerging at Q coloured in some way or correct description of movement of reflected ray (as θ decreases)[6](iv) ($P=$)/VI in any form or 4.2 × 12 50(.4) WC1[7](iii) ($E=$) Pt i.e. any power × any time e.g. 50(.4) × 8C1 $8/60$ or division by 1000 seen anywhereC1	(c) n =	sin <i>i</i> /sin <i>r</i> seen in any form	Call	Br.
) refracts less at first face and on correct side of normalB1refraction at second face away from normal so that red ray and blue ray are divergingB1[2](i) angle of incidence is 0 or ray along normal/perpendicular to glassB1[3](ii) angle of incidence/ θ is larger than critical angle total internal reflection occursB1[3](iii) reflected ray drawn correctly and emerging without refraction from blockB1[4](iv) (eventually) light emerges (into air at Q) or (light refracts (out at Q) or (weak) refracted ray appears light emerging at Q coloured in some way or correct description of movement of reflected ray (as θ decreases)[6](iv) ($P=$)/VI in any form or 4.2 × 12 50(.4) WC1[7](iii) ($E=$) Pt i.e. any power × any time e.g. 50(.4) × 8C1 $8/60$ or division by 1000 seen anywhereC1	•	r =) sin 45°/1.5 0.47(14) seen	C1	10
refraction at second face away from normal so that red ray and blue ray are divergingB1[2(i) angle of incidence is 0 or ray along normal/perpendicular to glassB1B1(ii) angle of incidence/ θ is larger than critical angle total internal reflection occursB1B1(iii) reflected ray drawn correctly and emerging without refraction from blockB1B1(iv) (eventually) light emerges (into air at Q) 	28(.1)°	C1	[3]
divergingB1[2](i) angle of incidence is 0 or ray along normal/perpendicular to glassB1(ii) angle of incidence/ θ is larger than critical angle total internal reflection occursB1(iii) reflected ray drawn correctly and emerging without refraction from blockB1(iii) reflected ray drawn correctly and emerging without refraction from blockB1(iv) (eventually) light emerges (into air at Q) or (weak) refracted ray appearsB1light emerging at Q coloured in some way or correct description of movement of reflected ray (as θ decreases)B1[Total: 15](i) power supply with ammeter and heater in series voltmeter in parallel with heater/ power supplyB1(i) $(P=)VI$ in any form or 4.2×12 $50(.4) W$ C1(ii) $(E=) Pt$ i.e. any power × any time e.g. $50(.4) \times 8$ C1 $8/60$ or 0.13(3) seen or division by 1000 seen anywhereC1	(d) refr	acts less at first face and on correct side of normal	B1	
or ray along normal/perpendicular to glassB1(ii) angle of incidence/ θ is larger than critical angle total internal reflection occursB1(iii) reflected ray drawn correctly and emerging without refraction from blockB1(iii) (eventually) light emerges (into air at Q) or light refracts (out at Q) or (weak) refracted ray appearsB1light emerging at Q coloured in some way or correct description of movement of reflected ray (as θ decreases)B1(ii) $(P=)VI$ in any form or 4.2×12 C1(ii) $(E=) Pt$ i.e. any power × any time e.g. $50(.4) \times 8$ C1 $8/60$ or 0.13(3) seen or division by 1000 seen anywhereC1				[2]
total internal reflection occursB1(iii) reflected ray drawn correctly and emerging without refraction from blockB1(iv) (eventually) light emerges (into air at Q) or light refracts (out at Q) or (weak) refracted ray appearsB1light emerging at Q coloured in some way or correct description of movement of reflected ray (as θ decreases)B1[Total: 15]p power supply with ammeter and heater in series voltmeter in parallel with heater/ power supplyB1[2][2](i) $(P=)VI$ in any form or 4.2×12 $50(.4) W$ C1(ii) $(E=)Pt$ i.e. any power × any time e.g. $50(.4) \times 8$ C18/60 or $0.13(3)$ seen or division by 1000 seen anywhereC1	(e) (i)		B1	
(iv)(eventually) light emerges (into air at Q) or light refracts (out at Q) or (weak) refracted ray appears light emerging at Q coloured in some way or correct description of movement of reflected ray (as θ decreases)B1[6](ii)($P=$)VI in any form or 4.2 × 12 50(.4) WC1 A1C1 C1 A1C1 C1 C1 C1C1 C1 C1(ii)($E=$) Pt i.e. any power × any time e.g. 50(.4) × 8 or division by 1000 seen anywhereC1C1 C1	(ii)			
or light refracts (out at Q) or (weak) refracted ray appearsB1[6]light emerging at Q coloured in some way or correct description of movement of reflected ray (as θ decreases)B1[7[Total: 15][Total: 15]B1[2]) power supply with ammeter and heater in series voltmeter in parallel with heater/ power supplyB1[2]) (i) $(P=)VI$ in any form or 4.2×12 $50(.4) W$ C1C1(ii) $(E=)Pt$ i.e. any power × any time e.g. $50(.4) \times 8$ C1 $8/60$ or 0.13(3) seen or division by 1000 seen anywhereC1	(iii)	reflected ray drawn correctly and emerging without refraction from blo	ock B1	
or correct description of movement of reflected ray (as θ decreases)[Total: 15](i) power supply with ammeter and heater in seriesB1voltmeter in parallel with heater/ power supplyB1[2](i) $(P=)VI$ in any formor 4.2×12 $50(.4)$ W(ii) $(E=)$ Pt i.e. any power × any time e.g. $50(.4) \times 8$ $8/60$ or 0.13(3) seenor division by 1000 seen anywhere	(iv)	or light refracts (out at Q)	B1	
) power supply with ammeter and heater in series voltmeter in parallel with heater/ power supply $B1$ [2 (i) $(P=)VI$ in any form or 4.2×12 50(.4) W A1 (ii) $(E=)$ Pt i.e. any power × any time e.g. $50(.4) \times 8$ 8/60 or $0.13(3)$ seen or division by 1000 seen anywhere			B1	[6
voltmeter in parallel with heater/ power supplyB1 [2(i) $(P=)VI$ in any form or 4.2×12 C1 $50(.4)$ WA1(ii) $(E=)$ Pt i.e. any power × any time e.g. $50(.4) \times 8$ C1 $8/60$ or $0.13(3)$ seen or division by 1000 seen anywhereC1			[Total:	15
or 4.2×12 A1 $50(.4)$ WA1(ii) $(E=)$ Pt i.e. any power × any time e.g. $50(.4) \times 8$ C1 $8/60$ C1or $0.13(3)$ seenC1or division by 1000 seen anywhereC1				[2
(ii) $(E=)$ Pt i.e. any power × any time e.g. $50(.4) \times 8$ C1 8/60 C1 or $0.13(3)$ seen or division by 1000 seen anywhere	(b) (i)		C1	
8/60 C1 or 0.13(3) seen or division by 1000 seen anywhere		50(.4) W	A1	
or 0.13(3) seen or division by 1000 seen anywhere	(ii)	(<i>E</i> =) <i>Pt</i> i.e. any power × any time e.g. $50(.4) \times 8$	C1	
0.0067(2) (kWh) A1 [5		or 0.13(3) seen	C1	
		0.0067(2) (kWh)	A1	[5

		2.
Page 7	Mark Scheme	Syllabus r
	GCE O LEVEL – May/June 2013	5054
	-	

(c) (i) molecules escape (from surface/leave water) / become gas or vapour / break bonds

(ii)

	GCE O LEVEL – May/June	3	5054	20-		
orea	ecules escape (from surface/leave w k bonds er) moving / high energy/ energetic i	,	Ū.	s or vapour /	A	mbridge
ch	ange	M1	explanatior	1		A1
wi	nd / draught / breeze	wind knocks	molecules	away		
or	larger surface area		more chance space to ese or more mol surface	cape	·	nore
or	decrease humidity / drier air		fewer molec	ules return/	from air	
or	decrease atmospheric pressure		fewer air mo	plecules to h	it during esc	ape

(iii) evaporation occurs at surface and boiling inside liquid/bubbles evaporation occurs at any temperature (accept room temperature) and boiling occurs at boiling point/100°C/ fixed / specific temperature evaporation increased by draughts/higher temp/more area and boiling is not OR increase in pressure stops boiling but only reduces evaporation any two B2 [6]

(d)	water heats air (by conduction) or water loses heat/energy (to cup or air) or air gains heat/energy (from water)	B1	
	hot / heated air / particles rise or cold air / particles sink or hot air is less dense or cold air is more dense	B1	[2]

[Total: 15]