MARK SCHEME for the October/November 2013 series

5054 PHYSICS

5054/21
Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus
	GCE O LEVEL - October/November 2013	5054

Section A

1 (a) $(m=) \rho V$ or 1000×450 $4.5 \times 10^{5} \mathrm{~kg}$
(b) (i) $\quad(Q=) m c \Delta T$ or $4.5 \times 10^{5} \times 4.2 \times 15$ or 4200 and $15 /(27-12) \quad \mathrm{C} 1$ $4.5 \times 10^{5} \times 4200 \times 15$ or $2.8(35) \times 10^{7}$ C1 $2.8(35) \times 10^{10} \mathrm{~J}$
(ii) thermal/internal energy/heat lost or gained by something specific (e.g. air/pool walls/tiles etc.) or heat lost by evaporation

2 (a) $F_{1} x_{1}=F_{2} x_{2}$ or $550 \times(0.86$ or 86$) /(1.1$ or 110$)$
C1 430 N A1
$\begin{array}{ll}\text { (b) } \begin{array}{l}\text { both moments increase } \\ \text { girl's moment increases more or girl's moment }>\text { brother's } \\ \text { or anticlockwise moment greater }\end{array} & \text { C1 } \\ & \text { A1 }\end{array}$
see-saw tips down on girl's side
B1

3 (a) molecules move/collide (ignore vibrate)
C1
molecules collide with the walls (to produce force) A1
(b) (i) $\begin{array}{ll}\left(p_{2}=\right) p_{1} V_{1} / V_{2} \text { or } p_{1} V_{1}=p_{2} V_{2} \text { or } 1.0 \times 10^{5} \times 120 / 16 \text { or } 100 \times 120 / 16 & \mathrm{C} 1 \\ 7.5 \times 10^{5} \mathrm{~Pa} \text { or } 750 \mathrm{kPa} & \mathrm{A} 1\end{array} ~$
(ii) $(F=) p A$ or $7.50 \times 10^{5} \times 1.2 \times 10^{-5}$ or $750 \times 1.2 \times 10^{-5}$
$9(.0) \mathrm{N}$ A1
(iii) (pressure) greater (than calculated) B1
molecules move faster/have more KE/collide more often (accept vibrate faster) B1 molecules collide more often/frequently or harder/with greater force B1

4 (a) (energy transmitted) by electromagnetic/infra-red (wave)/can travel through a vacuum
infra-red or visible $<\lambda<$ microwaves or λ just longer than visible (i.e. infra-red scores 2/2)
(b) (i) air is a poor conductor B1
(ii) convection occurs (primarily) upwards/hot air rises (not heat rises)

Page 3	Mark Scheme	Syllabus
	GCE O LEVEL - October/November 2013	5054

5 (a) (thin-walled) bulb and capillary tube mercury/liquid in bulb and constriction/U-bend
(b) mercury/liquid contracts mercury/liquid/thread breaks (at the constriction)/constriction stops the mercury falling back

6 (a) steel/alnico/SmCo/NdFeB/magnetite
(c) (place) magnet in solenoid
a.c. supply to solenoid/coil (ignore cell/battery symbol) B1
withdraw magnet (slowly) or reduce current (slowly)
(a) (i) $(I=) P / V$ or $9.6 / 240$ or 9600

40 A A1
(ii) any whole number from 41 to 99 (incl.) with unit (A) (e.c.f. from $0.040 \mathrm{~A}: 1,2,3 \mathrm{~A}$)
(b) $9.6 \times 25 \times 21$ or $9.6 \times 25 / 60$ or $9.6 \times 25 / 60 \times 21$ or 5040 c or $\$ 50.40$ etc.

8 (a) Penetration

Magnetic/electric Cloud chamber field

Spark counter

diagram: sample, detector,small gap	diagram: sample, detector, magnet	diagram: sample, cloud chamber	diagram: sample, spark counter, small gap labelled or clear
(insert/remove) (a sheet of) paper/card/Al foil (in gap)	(insert/remove) magnet	sample in cloud chamber	sample near to counter
no change in count	increased count in correct direction	no short, straight, dense tracks	no sparks

Page 4	Mark Scheme	Syllabus
	GCE O LEVEL - October/November 2013	5054

(b) any two of:
minimise time of exposure
lead clothing (e.g. lead gloves not radioactive suit)
forceps, tweezers, tongs, manipulator
behind protective glass/shield
wear film badge

Section B

9 (a) speed does not have direction and velocity does or speed = distance/time and velocity $=$ displacement/time or speed is a scalar and velocity is a vector
(b) (i) 700 N
(ii) 700 N

B1
(c) (i) $54 \mathrm{~m} / \mathrm{s}$ B1
(ii) $\begin{array}{ll}(\text { height/distance }=) \text { area (under graph) or }(x=) \text { vt or } 54 \times 12 & \text { C1 } \\ 648 / 650 \mathrm{~m} & \text { A1 }\end{array}$
(iii) (GPE =) mgh or $70 \times 10 \times 648$ C1
$4.5 / 4.54 / 4.536 \times 10^{5} \mathrm{~J}$
(d) (becomes) heat/thermal energy/internal energy
(not kinetic energy (of skydiver) unless qualified as KE of air)
B1
(e) (i) (air resistance) increases B1
$\begin{array}{ll}\text { larger area of parachute } & \text { B1 }\end{array}$
(ii) (skydiver) decelerates/slows down (not rises up) B1
net upward force
B1
$\begin{array}{ll}\text { (f) air resistance decreases } & \text { B1 } \\ \text { speed decreases } & \text { B1 }\end{array}$
[Total: 15]

10 (a) (i) speed of sound is (much) less than the speed of light (accept quoted values) B1
(ii) measure the time delay (between the lightning and thunder) B1 divide distance by time/delay

Page 5 Mark Scheme	Syllabus	
	GCE O LEVEL - October/November 2013	5054

(b) (i) $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(ii) $(\lambda=) c / f$ or $3.0 \times 10^{8} / 7.5 \times 10^{14}$ $4.0 \times 10^{-7} \mathrm{~m}$
(iii) (in any order) blue, green, orange, red, yellow, (indigo), (violet) or VIBGYOR violet, indigo, blue, green, yellow, orange, red
(c) (i) correct angle clear/labelled r
$\begin{array}{ll}\text { (ii) mark/determine entrance and exit points (e.g. trace rays back to glass) } & \text { B1 } \\ \text { join/draw line between entrance and exit points } & \text { B1 }\end{array}$
(iii) 1. $n=\sin i / \sin r$

2. 1.5/1.51/1.506176 with no unit

(not just 1.5 without working out)

B1
(iv) correct direction of refraction at both faces M1 completely correct (above blue) A1
(ii) 2.0 V (scores C 1 in (a)(i) if not already scored)
(b) (i) increased or becomes 1.25 A

B1
(ii) decreases or becomes 0.8Ω

B1
(c) moves up or down or 5.0/2.0 moves up or down by 2.5 cm

C1
-
(d) (i)

	Y-plates	X-plates
(glass) tube	anode	ZnS/screen

(5 correct 3 marks, 4 correct 2 marks, 3 correct 1 mark
X and Y plates reversed -1 ; allow focussing anode)
(ii) filament heated/thermionic emission B1
(thermionic) electrons attracted by anode or repelled by cathode

Page 6	Mark Scheme	Syllabus
	GCE O LEVEL - October/November 2013	5054
(iii) to prevent/otherwise collisions with air molecules/to allow to reach		
the screen/to avoid deflection		
(iv)1. electrons are charged 2. backwards or towards the back or opposite to electron motion or to the left or from the right		

B1 [8]
[Total: 15]

