MARK SCHEME for the May/June 2014 series

9791 CHEMISTRY

9791/03
Paper 3 (Part B Written), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9791	03

1 (a) $\mathrm{Mn}[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{2}$ (1) $\mathrm{Fe}^{2+}[\mathrm{Ar}] 3 \mathrm{~d}^{6}(1)$
(b) (i) The energy required to remove an electron (1) from each atom in a mole (1) of gaseous atoms (1)
(ii) addition of (successive) electrons to an inner subshell (1)
increased shielding with increasing nuclear charge (1)
attraction of nucleus for outer electrons remains approx. constant (1)
(iii) $\mathrm{Cr}^{+} \rightarrow \mathrm{Cr}^{2+}+\mathrm{e}^{-}$(1)
(iv) both have $4 \mathrm{~s}^{1}$ (outer electron structure $\mathrm{cf} 4 \mathrm{~s}^{2}$ for others) (1)
$2^{\text {nd }}$ electron removed from subshell/shell/orbital nearer to/less shielded from the nucleus (1)
so $2^{\text {nd }}$ electron more tightly held/greater attraction (1)
(c) (i) (+3 for Sc) increasing to (+7 for) Mn then down (to +2 for Zn) (1)
(initial) increase due to increasing no. of d electrons (1)
decrease due to increasing ionisation energies/nuclear charge (1)
(ii) $\mathrm{FeO}_{4}{ }^{2-}(1)$
(d) (i) ratio indicates amount of free Cl^{-}ions

OR W = 3Cli; $\mathbf{X}=2 \mathrm{Cl} l^{-} ; \mathbf{Y} \& \mathbf{Z}=1 \mathbf{C l} l^{-}$(1)
$\mathbf{O R} \mathbf{W}=$ no $\mathrm{C} l$ ligands; $\mathbf{X}=$ one $\mathrm{C} l$ ligand; $\mathbf{Y} \& \mathbf{Z}=$ two $\mathrm{C} l$ ligands
(ii) $\mathbf{W}=\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}(1) ; \mathbf{X}=\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{C}\right]^{2+}(1)$
(iii) structural isomerism (1)
(iv) geometric/cis-trans/ $E-Z$ isomerism (1)
(v)

Page 3	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9791	03

2 (a) (i) thermal decomposition (1)
(ii) more random dispersal of molecules in gaseous CO_{2}

OR more random dispersal of (quanta of) energy in gaseous CO_{2} (1)
(iii) $+160.4=39.7+213.6-S^{\circ}\left(\mathrm{CaCO}_{3}\right)(1)$
$S^{\circ}\left(\mathrm{CaCO}_{3}\right)=39.7+213.6-160.4=(+) \underline{92.9}\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(1)($ must be 1 dp$)$
(b) (i) The enthalpy / energy change of a reaction is independent of the route (1) providing starting and final conditions are the same (1)
(ii) Cycle or $\Delta_{\mathrm{f}} H^{\rho}$ products $-\Delta_{\mathrm{f}} H^{\rho}$ reactants
$178.3=\Delta_{t} H^{\circ} \mathrm{CaO}+(-393.5)-(-1206.9)(1)$
$\Delta_{\mathrm{f}} H^{\rho} \mathrm{CaO}=178.3+393.5-1206.9=-635.1\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1)($ must be 1 dp$)$
(iii) $\Delta S_{\text {surroundings }}=-\Delta_{r} H^{\circ} / T$ OR $-178300 / 298$ (1)
$=-598.3\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(1)$
$\Delta S_{\text {total }}^{\ominus}=\Delta S_{\text {system }}^{\ominus}+\Delta S_{\text {surround }}^{\ominus}=160.4-598.3=-437.9\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)(1)$
(iv) When $\Delta S_{\text {total }}^{\ominus}=0 ; T=\Delta_{f} H^{\top} / \Delta S_{\text {system }}^{\ominus}$ (1)
$=178300 / 160.4=1111.6 \mathrm{~K}$ (1)
Represents temperature above which reaction becomes feasible (1)
(c) (i) $K_{\mathrm{p}}=\mathrm{pCO}_{2}(1)$
(ii) $\quad \Delta \mathrm{G}=\Delta_{\mathrm{r}} H^{\rho}-\mathrm{T} \Delta S_{\text {system }}^{\ominus}=178.3-(1473 \times 0.1604)(1)$
$=-57.97 \mathrm{~kJ} \mathrm{~mol}^{-1}(1)\left(57969.2 \mathrm{~J} \mathrm{~mol}^{-1}\right)$
$\Delta \mathrm{G}=-\mathrm{RT} \ln K$ so $K_{\mathrm{p}}=\mathrm{e}^{-\Delta G / R T}$ (1)
$=(+) \underline{113.96}$ (ignore units) (1)
[Total: 19]

3 (a) (i) $\mathbf{A}=($ High R) voltmeter (1)
$B=$ salt bridge (1)
C $=1 \mathrm{M} \mathrm{Cu}^{2+}$ (1)
D $=\mathrm{Pt}$ (electrode) (1)
$\mathrm{E}=$ equimolar $/ 1 \mathrm{M} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} / \mathrm{Cr}^{3+}$ (1) acidified $/ \mathrm{H}^{+}$(1)
(ii) $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(1)$
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$ (1)
(iii) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+3 \mathrm{Cu} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Cu}^{2+}(1)$
(b) (i) $\mathrm{Zn}: \mathrm{H}_{2}=1: 1$
$\mathrm{pV}=\mathrm{nRT}$ so moles $\mathrm{H}_{2}=\left(10^{5} \times 126 \times 10^{-6}\right) /(8.31 \times 303)$
$=5.00 \times 10^{-3} \mathrm{~mol}=\mathrm{mol} \mathrm{Zn}$ (1)
mass $\mathrm{Zn}=5.01 \times 10^{-3} \times 65.4=\underline{0.327 \mathrm{~g}}(1)$ (must be 3 sf)

Page 4	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9791	03

(ii) amount copper $=4.88 \times 10^{-3} \times 5 / 2=0.0122 \mathrm{~mol}$ (1)
mass copper $=0.0122 \times 63.5=\underline{0.775 \mathrm{~g}}(1)(0.7747)$
(iii) total mass $=0.327+0.775=1.102 \mathrm{~g}$
$\%=(0.775 / 1.102) \times 100=70.3 \%(1)$
(c) (i) OH^{-}reacts with H^{+}(1)
so equilibrium moves to right (producing more $\mathrm{CrO}_{4}{ }^{2-}$) (1)
(ii) (more orange = more dichromate hence) equilibrium has moved left
so (by le Chatelier's principle, forward) reaction is endothermic/reverse is exothermic (1)
(iii) BaCrO_{4} will be precipitated/form solid hence equilibrium moves to right (1)
K_{c} unchanged (1)
pH falls (1)
[Total: 20]

4 (a) (enantiomers $=$ stereoisomers that are) non-superimposable mirror images of each other (1)
chiral centre $=$ carbon with 4 different groups/atoms attached (1)
(b) (i) 1:2:1 (1)
(ii)

6 correct $=3 ; 4 / 5$ correct $=2 ; 2 / 3$ correct $=1(3)$
[3]
(c) (i)

2-methylbutanal (1)
(ii) oxidation (1)
(iii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH} / 2$-methylbutanoic acid (1)
$2 \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{Na}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ (1)
(iv) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}(\mathrm{OH}) \mathrm{CN}$ OR (semi-)displayed/skeletal (1)
nucleophilic addition (1)
planar carbonyl (1)
attack either side (gives mix of isomers) (1)

Page 5	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9791	03

(v) 2-hydroxy-3-methylpentanoic acid (or unambiguous formula) (1)
hydrolysis (1)
[Total: 17]

5 (a) (i) Propene/HCl/or 2-chloropropane (1)
AlCl_{3} (1)
$\mathrm{CH}_{3} \mathrm{C}^{+} \mathrm{HCH}_{3}$ (1)
(conc) HNO_{3} (1)
(conc) $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1)
$\mathrm{NO}_{2}{ }^{+}(1)$
(ii) reduction (1)
$\mathrm{Sn} / \mathrm{HCl}$ or $\mathrm{Fe} / \mathrm{HCl}(1)$
(b) (i) bromine decolourises (1)
white precipitate (1)
(ii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{Br}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Br}_{3} \mathrm{OH}+3 \mathrm{HBr}$

1 mark for organic product, 1 mark for rest of equation correct (2)
(iii) - OH donates electrons to delocalised system/ring (1) increasing charge density in/activating ring (1)
so increasing attraction for electrophile (1)
$-\mathrm{NO}_{2}$ electron-withdrawing/deactivating (1)
(c) phenol more acidic (than ethanol) OR equilibrium lies further right $\mathbf{O R}$ dissociates into ions more readily (1)
reduction of charge density stabilises anion (1)
(d) (i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{HCl} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{(+)} \mathrm{Cl}^{(-)}(1)$
(ii) ethylamine > ammonia > phenylamine (1)
electron-releasing ethyl group increases charge density of N cf ammonia (1) involvement of lone pair (of N) in benzene ring decreases availability to accept proton in phenylamine (1)
[Total: 22]

