FURTHER MATHEMATICS

9795/01
Paper 1 Further Pure Mathematics
May/June 2016
MARK SCHEME
Maximum Mark: 120

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$,
Cambridge International A and AS Level components and some Cambridge O Level components.

[^0]| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
| | Cambridge Pre-U - May/June 2016 | 9795 | 01 |

Question	Answer	Marks	Notes
1	$\begin{aligned} \sum_{r=1}^{n}\left(8 r^{3}+r\right) & \equiv 8 \sum_{r=1}^{n} r^{3}+\sum_{r=1}^{n} r \\ & \equiv 8 \times \frac{1}{4} n^{2}(n+1)^{2}+\frac{1}{2} n(n+1) \\ & \equiv \frac{1}{2} n(n+1)\left\{4 n^{2}+4 n+1\right\} \\ & \equiv \frac{1}{2} n(n+1)(2 n+1)^{2} \end{aligned}$	M1 M1 M1 A1 [4]	Splitting into separate series Both used good factorisation attempt Legitimate (AG)
2	$\begin{aligned} & \left(\begin{array}{l} 6 \\ 2 \\ 5 \end{array}\right) \times\left(\begin{array}{c} -6 \\ 1 \\ 4 \end{array}\right)=3\left(\begin{array}{c} 1 \\ -18 \\ 6 \end{array}\right) \\ & \text { Shortest Distance }=\|(\mathbf{b}-\mathbf{a}) \bullet \hat{\mathbf{n}}\| \\ & \quad=\frac{1}{19}\left(\begin{array}{c} 10 \\ -2 \\ 5 \end{array}\right) \cdot\left(\begin{array}{c} 1 \\ -18 \\ 6 \end{array}\right)=\frac{1}{19}(10+36+30) \\ & \quad=4 \end{aligned}$ Alternative method: M1 A1 for common normal $\mathbf{i}-18 \mathbf{j}+6 \mathbf{k}$ M1 A1 for parallel planes $x-18 y+6 z=-55$ and -131 M1 A1 for Sh.D formula, $\frac{\|131-55\|}{\|\mathbf{n}\|}=\frac{76}{19}=4$	M1 A1 M1 B1 B1 A1 [6]	Attempt at vector products of the d.v.s (any suitable multiple) $\|\hat{\mathbf{n}}\| \text { correct }$ Sc. Prod. ft correct
3 (i) (ii)	$\frac{2 x^{2}-x-1}{2 x-3}=k \Rightarrow 2 x^{2}-(2 k+1) x+(3 k-1)=0$ For non-real $x, \quad(2 k+1)^{2}-8(3 k-1)<0$ $\begin{aligned} & 4 k^{2}-20 k+9<0 \Rightarrow(2 k-1)(2 k-9)<0 \\ & \Rightarrow \text { no curve for } \frac{1}{2}<k=y<\frac{9}{2} \end{aligned}$ TPs at $\quad y=\frac{1}{2}$ i.e. $\quad 2 x^{2}-2 x+\frac{1}{2}=0$ $x=\frac{1}{2}$ $\begin{array}{r} y=\frac{9}{2} \\ 0 x+\frac{25}{2}= \\ x=\frac{5}{2} \end{array}$ Alternative method: when $\Delta=0, \mathbf{M 1} x="-\frac{b}{2 a} "=\frac{2 k+1}{4}$ M1 $\Rightarrow x=\frac{1}{2}\left(y=\frac{1}{2}\right) \& x=\frac{5}{2}\left(y=\frac{9}{2}\right)$ A1 A1 Note: For finding TPs via $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$, max. M1 A1 since qn. asks for a "deduce" method	B1 M1 M1 A1 [4] M1 M1 A1A1 [4]	(AG) Shown legitimately Considering discriminant (or equivalent) Solving from $\Delta<0$ (AG) Must be satisfactorily explained First $y(k)$ substituted back Second $y(k)$ substituted back

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2016	9795	01

Question	Answer	Marks	Notes
4 (i) (ii)	Attempt at $\operatorname{det}(\mathbf{M})$ Det $=0$ Shown $\begin{aligned} -x+3 y+z & =1 \\ 5 x-y+2 z & =16 \\ -x+y \quad & =-2 \end{aligned}$ parametrisation attempt (or equivalent) started: e.g. set $x=\lambda$, then $y=\lambda-2$ complete attempt: $z=1+\lambda-3 \lambda+6=7-2 \lambda$ all correct (p.v. and d.v.) ... may be in vector line eqn. form: $\mathbf{r}=\left(\begin{array}{c}0 \\ -2 \\ 7\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right)$ Alternative method 1: B1 as above, followed by (e.g.): Finding two distinct points on the solution line; e.g. $(2,0,3),(0,-2,7)$ M1 A1 Then eqn. of line containing these 2 points M1 A1 possibly ft for line (of intersection) of 3 planes (given by the 3 eqns.) B1 Alternative method 2: B1 as above, followed by: Vector product of any two plane normals M1A1 Finding coords. or p.v. of any pt. on line B1 Eqn. of line using these results appropriately B1 for line (of intersection) of 3 planes (given by the 3 eqns.) B1		(Or via full alternative algebraic method) for all three
5	Aux. Eqn. $m^{2}-4 m+5=0$ $m=2 \pm \mathrm{i}$ Comp. Fn. is $\quad y_{C}=\mathrm{e}^{2 x}(A \cos x+B \sin x)$ For Part. Intgl. try $y=y_{p}=a \mathrm{e}^{2 x}$ Both $y^{\prime}=2 a \mathrm{e}^{2 x}$ and $y^{\prime \prime}=4 a \mathrm{e}^{2 x}$ Subst ${ }^{\text {}}$. into given d.e. \& solving to find a : $y_{p}=24 \mathrm{e}^{2 x}$ Gen. Soln. $y=\mathrm{e}^{2 x}(A \cos x+B \sin x+24)$	M1 A1 B1ft B1 B1 M1 A1 B1ft	Including solving attempt $(4 a-8 a+5 a) \mathrm{e}^{2 x}=24 \mathrm{e}^{2 x}$ $y_{C}+y_{P}$ provided y_{C} has 2 arbitrary constants and y_{P} has none. Also, A, B must be real here

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2016	$\mathbf{9 7 9 5}$	01

Question	Answer	Marks	Notes
6 (i) (ii) (iii)	For $\mathrm{f}(x)=\sinh x+\sin x-3 x$, $\mathrm{f}(2.5)=-0.851 \ldots<0 \text { and } \mathrm{f}(3)=1.159 \ldots>0$ Change-of-sign (for a continuous fn.) $\Rightarrow 2.5<\alpha<3$ $\begin{aligned} \sinh x+\sin x= & \left(x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\frac{x^{9}}{9!}+\ldots\right)+ \\ & \left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\ldots\right) \\ = & 2 x+\frac{x^{5}}{60}+\ldots \\ 2 x+\frac{x^{5}}{60}=3 x \Rightarrow & \Rightarrow(x \neq 0) x^{4}=60 \\ & \Rightarrow \alpha \approx \sqrt[4]{60}(2.783158 \ldots) \end{aligned}$ Using $2 x+\frac{x^{5}}{60}+\frac{x^{9}}{181440}=3 x$ with $x \neq 0$ Solving as a quadratic in x^{4} $\alpha \approx 2.7698 \text { (to } 4 \text { d.p.) }$ [c.f. actual root 2.7697 to 4 d.p.]	A1 B1 M1 M1 A1 [3]	or LHS $<$ RHS and then LHS $>$ RHS All correctly shown/explained for use of both series (attempted) (AG) shown legitimately $x^{8}+3024 x^{4}-181440=0$ from $x^{4}=\sqrt{2467584}-1512$, $x=\sqrt[4]{58.8545 \ldots}$
$7 \quad$ (i) (ii)	$\left\|z^{3}\right\|=2 \sqrt{2} \quad \arg \left(z^{3}\right)=\frac{1}{4} \pi$ $\Rightarrow z=\left(\sqrt{2}, \frac{1}{12} \pi\right)$ cube-rooting modulus; arg $\div 3$ Other two roots: $\left(\sqrt{2}, \frac{3}{4} \pi\right)$ and $\left(\sqrt{2}, \frac{17}{12} \pi\right)$ Equilateral Δ with vertices in approx. correct places $\text { Area }=3 \times \frac{1}{2} \times \sqrt{2} \times \sqrt{2} \sin \left(\frac{2}{3} \pi\right)=\frac{3}{2} \sqrt{3}$ Accept awrt 2.60 (3 s.f.) from correct working	B1B1 M1M1 A1A1 [6] B1 M1A1	(in at least the first case) Give M1 for any correct area

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2016	9795	01

Question	Answer							Marks	Notes
8 (i) (a)	G	1	2	4	8	16	32		
	1	1	2	4	8	16	32		
	2	2	4	8	16	32	1	M1	for mostly correct
	4	4	8	16	32	1	2	A1	for all correct
	8	8	16	32	1	2	4		
	16	16	32	1	2	4	8		
	32	32	1	2	4	8	16		
(b)(ii) (a)	(S, \times_{63}) closed, since no new elements in table x_{63} is associative (given) 1 is the identity element Each (non-identity) element has a unique inverse: $2 \leftrightarrow 32,4 \leftrightarrow 16$ and 8 is self-inverse							B1	
								B1 B1	All must be identified
	H	e	\boldsymbol{x}	y	y^{2}	$x y$	$\boldsymbol{y x}$		for
	e	e	x	y	y^{2}	$x y$	$y x$	B1	for last 3 elements (any for
	x	x	e	$x y$	$y x$	y	y^{2}	B1	for identity row/column (green)
	y	y	$y x$	y^{2}	e	x	$x y$	B1	for easy elements (gold) or $\geqslant 14$ others
	y^{2}	y^{2}	$x y$	e	y	$y x$	x		
	$x y$	$x y$	y^{2}	$y x$	x	e	y		
	$y x$	$y x$	y	x	$x y$	y^{2}	e		
(b) (c)	Proper subgroups of H are (condone inclusion of $\{e\}$ and H): $\{e, x\},\{e, x y\},\{e, y x\}$ and $\left\{e, y, y^{2}\right\}$ G and H are NOT isomorphic e.g. Different numbers of self-inverse elements / elements of order 3 or G cyclic, H non-cyclic or G abelian, H nonabelian							B1B1 [2]	B1 Any 2; +B1 all 4 and no extras
								B1	Correct conclusion WITH a valid reason
								[1]	

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2016	9795	01

Question	Answer	Marks	Notes
10 (i)		M1A1	$\frac{1}{2}+\sin \theta=0$ when $\theta=\frac{7}{6} \pi, \frac{11}{6} \pi$
		B1	Symmetry in y-axis
		B1	$\left(\frac{1}{2}, 0\right)$ on initial line
		B1	Correct upper portion
		B1 [6]	Correct lower portion
(ii)	$A=\left(\frac{1}{2}\right) \int_{0}^{2 \pi}\left(\frac{1}{2}+\sin \theta\right)^{2} \mathrm{~d} \theta$	M1	Penalise incorrect multiples with final A0
	$=\frac{1}{2} \int_{0}^{2 \pi}\left(\frac{1}{4}+\sin \theta+\frac{1}{2}-\frac{1}{2} \cos 2 \theta\right) \mathrm{d} \theta$	M1	Double-angle formula
	$=\frac{1}{2}\left[\frac{3}{4} \theta-\cos \theta-\frac{1}{4} \sin 2 \theta\right]_{0}^{2 \pi}$	A1	correctly integrated 3 suitable terms
	$=\frac{3}{4} \pi$	A1 [4]	

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2016	$\mathbf{9 7 9 5}$	01

Question	Answer	Marks	Notes
$\begin{array}{ll}11 & \text { (i) } \\ & \text { (ii) (a) } \\ \\ & \\ & \text { (b) }\end{array}$	$F_{3}=2, F_{4}=3, F_{5}=5, F_{6}=8$	${ }^{\text {B1 }} \quad$	all
(ii) (a)	$\mathrm{p}_{2}(x)=1+\frac{1}{x+1}=\frac{x+2}{x+1}$	B1	
	$\mathrm{p}_{3}(x)=\frac{2 x+3}{x+2}$	B1	
	$\mathrm{p}_{4}(x)=\frac{3 x+5}{2 x+3}$	${ }^{B 1} \quad\left[\begin{array}{l} \\ \hline \end{array}\right.$	(AG))
	$\mathrm{p}_{n}(x)=\frac{F_{n} x+F_{n+1}}{F_{n-1} x+F_{n}}$	B1	
	Result is true for $n=2$ (and 3 and 4) Assuming $\mathrm{p}_{k}(x)=\frac{F_{k} x+F_{k+1}}{F_{k-1} x+F_{k}} \quad$ (not separate from their conjecture)	B1	May be mentioned in later in their "round up"
	$\begin{aligned} \mathrm{p}_{k+1}(x) & =1+\frac{F_{k-1} x+F_{k}}{F_{k} x+F_{k+1}} \\ & =\frac{F_{k} x+F_{k+1}}{F_{k} x+F_{k+1}}+\frac{F_{k-1} x+F_{k}}{F_{k} x+F_{k+1}} \\ & =\underline{\left(F_{k}+F_{k-1}\right) x+\left(F_{k}+F_{k+1}\right)} \end{aligned}$	M1	
	$=\frac{\left(1_{k}+1_{k-1}\right.}{F_{k} x+F_{k+1}}$	M1	Collecting coeffts. into successive Fib. terms
	$=\frac{F_{k+1} x+F_{k+2}}{F_{k} x+F_{k+1}}$ which is the required formula with $n=k+1$. Accept this as sufficient that proof follows by induction.	$\begin{array}{rrr}\text { A1 } \\ \\ & \\ & {[5]}\end{array}$	

Question	Answer	Marks	Notes
12 (i) (ii) (a) (b)	$\begin{aligned} & y=\ln \left(\tanh \frac{1}{2} x\right) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\tanh \frac{1}{2} x} \cdot \frac{1}{2} \operatorname{sech}^{2} \frac{1}{2} x \\ &=\operatorname{cosech} x \\ & L_{n}=\int_{n}^{2 n} \sqrt{1+\operatorname{cosech}^{2} x} \mathrm{~d} x \\ &= \int_{n}^{2 n} \operatorname{coth} x \mathrm{~d} x \\ &= {[\ln (\sinh x)] } \\ & \ln \left(\frac{\sinh 2 n}{\sinh n}\right)=\ln \left(\frac{\mathrm{e}^{2 n}-\mathrm{e}^{-2 n}}{\mathrm{e}^{n}-\mathrm{e}^{-n}}\right) \\ & \approx \ln \left(\frac{\mathrm{e}^{2 n}}{\mathrm{e}^{n}}\right), \text { for large } n, \quad=\ln \left(\mathrm{e}^{n}\right)=n \end{aligned}$ OR $\begin{aligned} & \ln \left(\frac{\sinh 2 n}{\sinh n}\right)=\ln (2 \cosh n)=\ln \left(\mathrm{e}^{n}+\mathrm{e}^{-n}\right) \\ & \approx \ln \left(\mathrm{e}^{n}\right) \text { for large } n, \quad=\quad \text { A1 } \end{aligned}$ Method (sketch or statement) to indicate that C asymptotically "merges" with the x-axis so that C is approximately a horizontal straightline from $(n, 0)$ to $(2 n, 0)$	M1A1 A1 [3] M1 A1 A1 M1 A1 [5] M1 A1 [2]	(AG) correct integrn. legitimately legitimately
13 (i) (a)	Let $y=\sec ^{-1} x$, i.e. $\sec y=x$ $\Rightarrow \cos y=\frac{1}{x} \Rightarrow y=\cos ^{-1}\left(\frac{1}{x}\right)$ Then $\frac{\mathrm{d}}{\mathrm{d} x}\left(\sec ^{-1} x\right)=\frac{\mathrm{d}}{\mathrm{d} x}\left(\cos ^{-1} \frac{1}{x}\right)$ $\begin{aligned} & =-\frac{1}{\sqrt{1-(1 / x)^{2}}} \times \frac{-1}{x^{2}} \\ & =\frac{1}{x \sqrt{x^{2}-1}} \end{aligned}$ [Allow M1 A1 for valid non-"deduced" approaches]	B1 M1 A1 [3]	(Using MF20 and the Chain Rule) (AG)

Question	Answer	Marks	Notes
(b)(ii) (a)	$\int \sec ^{-1} x .1 \mathrm{~d} x$	M1	Use of integration by "parts"
	$=x \cdot \sec ^{-1} x-\int x \cdot \frac{1}{\sqrt{x^{2}-1}} \mathrm{~d} x$	A1 A1	
	$=\left[x \cdot \sec ^{-1} x-\cosh ^{-1} x\right]$	A1 [4]	Condone lack of " $+C$ "
	$\begin{aligned} & \frac{1}{x \sqrt{x^{2}-1}}=\frac{1}{\sqrt{2}} \Rightarrow x^{2}\left(x^{2}-1\right)=2 \\ & \Rightarrow x^{4}-x^{2}-2=\left(x^{2}-2\right)\left(x^{2}+1\right)=0 \\ & \Rightarrow x=\sqrt{2} \quad \text { and } y=\frac{1}{4} \pi \end{aligned}$	M1 A1 A1	i.e. $P=\left(\sqrt{2}, \frac{1}{4} \pi\right)$
	$\begin{aligned} & \frac{\frac{1}{4} \pi}{\sqrt{2}-c}=\frac{1}{\sqrt{2}} \\ & c=\sqrt{2}-\frac{\pi \sqrt{2}}{4} \end{aligned}$	M1 A1 A1 [6]	or by $y-\frac{1}{4} \pi=\frac{1}{\sqrt{2}}(x-\sqrt{2}) \& y=0$ i.e. $Q=\left(\sqrt{2}-\frac{\pi \sqrt{2}}{4}, 0\right)$
(b)	Area $\Delta=\frac{1}{2} \times \frac{\pi \sqrt{2}}{4} \times \frac{\pi}{4}=\frac{\pi^{2} \sqrt{2}}{32}$	B1	
	Area under curve $=\sqrt{2} \cdot \frac{\pi}{4}-\ln (1+\sqrt{2})$	B1	using (iii)'s answer and the limits $(1, \sqrt{2})$
	Then $R=\frac{\pi^{2} \sqrt{2}}{32}-\frac{\pi \sqrt{2}}{4}+\ln (1+\sqrt{2})$	M1	Difference in areas
	$=\ln (1+\sqrt{2})-\frac{\pi(8-\pi) \sqrt{2}}{32}$	A1 [4]	(AG)

[^0]: ® IGCSE is the registered trademark of Cambridge International Examinations.

