

Cambridge International Examinations

Cambridge Pre-U Certificate

FURTHER MATHEMATICS

9795/01

Paper 1 Further Pure Mathematics

May/June 2016

MARK SCHEME
Maximum Mark: 120

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 3 Pre-U Certificate.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U – May/June 2016	9795	01

Question	Answer	Marks	Notes
1	$\sum_{r=1}^{n} (8r^{3} + r) \equiv 8 \sum_{r=1}^{n} r^{3} + \sum_{r=1}^{n} r$	M1	Splitting into separate series
	$\equiv 8 \times \frac{1}{4} n^2 (n+1)^2 + \frac{1}{2} n(n+1)$	M1 M1	Both used good factorisation attempt
	$\equiv \frac{1}{2}n(n+1)\left\{4n^2 + 4n + 1\right\}$		
	$\equiv \frac{1}{2}n(n+1)(2n+1)^2$	A1 [4]	Legitimate (AG)
2	$ \begin{pmatrix} 6 \\ 2 \\ 5 \end{pmatrix} \times \begin{pmatrix} -6 \\ 1 \\ 4 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ -18 \\ 6 \end{pmatrix} $	M1 A1	Attempt at vector products of the d.v.s (any suitable multiple)
	Shortest Distance = $ (\mathbf{b} - \mathbf{a}) \cdot \hat{\mathbf{n}} $	M1	
	$= \frac{1}{19} \begin{pmatrix} 10 \\ -2 \\ 5 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ -18 \\ 6 \end{pmatrix} = \frac{1}{19} (10 + 36 + 30)$ $= 4$	B1 B1 A1	$ \hat{\mathbf{n}} $ correct Sc. Prod. ft correct
	Alternative method:	[6]	
	M1 A1 for common normal $\mathbf{i} - 18\mathbf{j} + 6\mathbf{k}$ M1 A1 for parallel planes $x - 18y + 6z = -55$ and -131		
	M1 A1 for Sh.D formula, $\frac{ 131-55 }{ \mathbf{n} } = \frac{76}{19} = 4$		
3 (i)	$\frac{2x^2 - x - 1}{2x - 3} = k \implies 2x^2 - (2k + 1)x + (3k - 1) = 0$	B1	(AG) Shown legitimately
	For non-real x , $(2k+1)^2 - 8(3k-1) < 0$	M1	Considering discriminant (or equivalent)
	$4k^2 - 20k + 9 < 0 \implies (2k - 1)(2k - 9) < 0$ $\Rightarrow \text{ no curve for } \frac{1}{2} < k = y < \frac{9}{2}$	M1 A1 [4]	Solving from $\Delta < 0$ (AG) Must be satisfactorily explained
(ii)	TPs at $y = \frac{1}{2}$ $y = \frac{9}{2}$	M1	First y (k) substituted back
	i.e. $2x^2 - 2x + \frac{1}{2} = 0$ $2x^2 - 10x + \frac{25}{2} = 0$	M1	Second <i>y</i> (<i>k</i>) substituted back
	$x = \frac{1}{2} \qquad \qquad x = \frac{5}{2}$	A1A1 [4]	
	Alternative method: when $\Delta = 0$, M1 $x = "-\frac{b}{2a}" = \frac{2k+1}{4}$		
	$2a 4$ $M1 \Rightarrow x = \frac{1}{2} (y = \frac{1}{2}) & x = \frac{5}{2} (y = \frac{9}{2}) A1 A1$		
	Note: For finding TPs via $\frac{dy}{dx} = 0$, max. M1 A1		
	$\frac{dx}{dx}$ since qn. asks for a "deduce" method		

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U – May/June 2016	9795	01

Q	uestion	Answer	Marks	Notes
4	(i)	Attempt at det(M) Det = 0 Shown	M1 A1	(Or via full alternative algebraic method)
	(ii)	$-x+3y+z=1$ $5x-y+2z=16$ $-x+y = -2$ parametrisation attempt (or equivalent) started: e.g. set $x = \lambda$, then $y = \lambda - 2$ complete attempt: $z = 1 + \lambda - 3\lambda + 6 = 7 - 2\lambda$ all correct (p.v. and d.v.) may be in vector line eqn. form: $\mathbf{r} = \begin{pmatrix} 0 \\ -2 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$ Alternative method 1: B1 as above, followed by (e.g.): Finding two distinct points on the solution line; e.g. $(2, 0, 3), (0, -2, 7)$ M1 A1 Then eqn. of line containing these 2 points M1 A1 possibly ft for line (of intersection) of 3 planes (given by the 3 eqns.) B1	B1 M1 M1 A1A1 [6]	for all three
		Alternative method 2: B1 as above, followed by: Vector product of any two plane normals M1A1 Finding coords. or p.v. of any pt. on line B1 Eqn. of line using these results appropriately B1 for line (of intersection) of 3 planes (given by the 3 eqns.) B1		
5		Aux. Eqn. $m^2 - 4m + 5 = 0$ $m = 2 \pm i$ Comp. Fn. is $y_C = e^{2x} \left(A\cos x + B\sin x \right)$ For Part. Intgl. try $y = y_p = a e^{2x}$ Both $y' = 2a e^{2x}$ and $y'' = 4a e^{2x}$ Subst ^g . into given d.e. & solving to find a : $y_p = 24e^{2x}$ Gen. Soln. $y = e^{2x} \left(A\cos x + B\sin x + 24 \right)$	M1 A1 B1ft B1 B1 M1 A1 B1ft	Including solving attempt $(4a-8a+5a)e^{2x} = 24e^{2x}$ $y_C + y_P \text{ provided } y_C \text{ has 2 arbitrary constants and } y_P \text{ has none.}$ Also, A , B must be real here
			[8]	

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U – May/June 2016	9795	01

Q	uestion	Answer	Marks	Notes
6	(i)	For $f(x) = \sinh x + \sin x - 3x$, f(2.5) = -0.851 < 0 and $f(3) = 1.159 > 0Change-of-sign (for a continuous fn.)$	M1	or LHS < RHS and then LHS > RHS
		$\Rightarrow 2.5 < \alpha < 3$	A1 [2]	All correctly shown/explained
	(ii)	$\sinh x + \sin x = \left(x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \frac{x^9}{9!} + \dots\right) +$	M1	for use of both series (attempted)
		$\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \dots\right)$		
		$= 2x + \frac{x^5}{60} + \dots$	A1	
		$2x + \frac{x^5}{60} = 3x \implies (x \neq 0) \ x^4 = 60$		
		$\Rightarrow \alpha \approx \sqrt[4]{60} (2.783 \ 158 \dots)$	B1 [3]	(AG) shown legitimately
	(iii)	Using $2x + \frac{x^5}{60} + \frac{x^9}{181440} = 3x$ with $x \neq 0$	M1	
		Solving as a quadratic in x^4	M1	$x^8 + 3024x^4 - 181440 = 0$
		$\alpha \approx 2.769 \ 8 \ \text{(to 4 d.p.)}$	A1	from $x^4 = \sqrt{2} \cdot 467 \cdot 584 - 1512$, $x = \sqrt[4]{58.854} \cdot 5$
		[c.f. actual root 2.769 7 to 4 d.p.]	[3]	w vooloo i o
7	(i)	$ z^3 = 2\sqrt{2}$ $\arg(z^3) = \frac{1}{4}\pi$	B1B1	
		$\Rightarrow z = (\sqrt{2}, \frac{1}{12}\pi)$ cube-rooting modulus; arg $\div 3$	M1M1	(in at least the first case)
		Other two roots: $(\sqrt{2}, \frac{3}{4}\pi)$ and $(\sqrt{2}, \frac{17}{12}\pi)$	A1A1 [6]	
	(ii)	Equilateral Δ with vertices in approx. correct places	B1	
		Area = $3 \times \frac{1}{2} \times \sqrt{2} \times \sqrt{2} \sin\left(\frac{2}{3}\pi\right) = \frac{3}{2}\sqrt{3}$	M1A1	Give M1 for any correct area
		Accept awrt 2.60 (3 s.f.) from correct working	[3]	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U – May/June 2016	9795	01

Q	uesti	on				Answ	er				Ma	rks	Notes
8	(i)	(a)	G	1	2	4	8	16	32				
			1	1	2	4	8	16	32				
			2	2	4	8	16	32	1		M1		for mostly correct
			4	4	8	16	32	1	2		A1		for all correct
			8	8	16	32	1	2	4				
			16	16	32	1	2	4	8				
			32	32	1	2	4	8	16			[2]	
		(b)	(S, \times_{63})) closed	d, since	no ne	w elem	ents in	table		B1		
		, ,	\times_{63} is a	issocia	tive (gi	ven)					B1		
			1 is the Each (ıt has a	uniqu	e		ы		
			inverse $2 \leftrightarrow 32$		16 or	d Oia	galf in				B1		All must be identified
			2 ↔ 3.	∠, 4 ←	• 10 ai	iu o is	Sen-m	verse			Di	[3]	7 m mast se raemmea
	(ii)	(a)	H	e	x	y	y^2	xy	yx		D1		See 1 - 1 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
			e	e	х	y	y^2	xy	yx		B1		for last 3 elements (any forms)
			x	x	e	xy	ух	y	y^2		B1		for identity row/column (green)
			y	у	ух	y^2	e	x	xy		B1		for easy elements (gold) or ≥ 14 others
			y^2	y^2	xy	e	у	ух	x		B1		for all
			xy	xy	y^2	yx	х	e	у		21		Tot un
			yx	yx	у	X	xy	y^2	e				
												[4]	
		(b)	Proper {e} and	_	oups of	H are	(condo	ne inc	usion o	of			
					·}, {e,	yx} ai	nd $\{e, $	y, y^2			B1B	1	B1 Any 2; +B1 all 4 and no extras
												[2]	
		(c)	G and e.g. Di					erse el	ements	/	B1		Correct conclusion WITH a valid reason
			e.g. Different numbers of self-inverse elements / elements of order 3 or G cyclic, H non-cyclic or G abelian, H non-										
			or G cy		d non-c	yclic	or G	abeliar	H nor	n-			
												[1]	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U – May/June 2016	9795	01

Q	uestion	Answer	Marks	Notes
9	(i)	$\alpha + \beta + \gamma = a$, $\alpha\beta + \beta\gamma + \gamma\alpha = b$ and $\alpha\beta\gamma = c$	B1B1	B1 any 2 correct; + B1 all 3 correct
	(ii)	$\begin{vmatrix} \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \\ = \alpha^2 - 2b \\ \alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2 = (\alpha\beta + \beta\gamma + \gamma\alpha)^2 \\ -2\alpha\beta\gamma(\alpha + \beta + \gamma) \end{vmatrix}$	[2] M1 A1 M1	
		$=b^2-2ac$	A1 [4]	
	(iii)	$(\alpha - 2\beta \gamma)(\beta - 2\gamma \alpha)(\gamma - 2\alpha \beta)$		
		$= (\alpha\beta - 2\beta^2\gamma - 2\alpha^2\gamma + 4\gamma^2\alpha\beta)(\gamma - 2\alpha\beta)$	M1	
		$= \alpha\beta\gamma - 2(\alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2) + 4\alpha\beta\gamma(\alpha^2 + \beta^2 + \gamma^2) - 8(\alpha\beta\gamma)^2$	M1	Collecting up in terms of the symmetric fns.
		$= c - 2(b^2 - 2ac) + 4c(a^2 - 2b) - 8c^2$	M1	Use of (i)'s and (ii)'s results
		$= c(1+4a+4a^2)-2(b^2+4bc+4c^2)$		
		$= c(2a+1)^2 - 2(b+2c)^2$	A1 [4]	legitimately
		Alternative method:		
		Using $\alpha\beta\gamma = c$, $(\alpha - 2\beta\gamma)(\beta - 2\gamma\alpha)(\gamma - 2\alpha\beta)$		
		$= \left(\alpha - \frac{2c}{\alpha}\right) \left(\beta - \frac{2c}{\beta}\right) \left(\gamma - \frac{2c}{\gamma}\right)$		
		$= \frac{1}{\alpha\beta\gamma} \left(\alpha^2 - 2c\right) \left(\beta^2 - 2c\right) \left(\gamma^2 - 2c\right) =$		
		$\frac{1}{c} \left((\alpha \beta \gamma)^2 - 2c \sum \alpha^2 \beta^2 + 4c^2 \sum \alpha^2 - 8c^3 \right)$		
		$= \frac{1}{c} \left(c^2 - 2c \left[b^2 - 2ac \right] + 4c^2 \left[a^2 - 2b \right] - 8c^3 \right)$		
	(:)	= etc. as above		
	(iv)	One root is the product of the other two $\Leftrightarrow (\alpha - 2\beta \gamma)(\beta - 2\gamma \alpha)(\gamma - 2\alpha \beta) = 0$		
		$\Leftrightarrow c(2a+1)^2 = 2(b+2c)^2$	B1	legitimately
		Must reason \Rightarrow and \Leftarrow explicitly (or together)	[1]	

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U – May/June 2016	9795	01

Question	Answer	Marks	Notes
10 (i)		M1A1	$\frac{1}{2} + \sin \theta = 0$ when $\theta = \frac{7}{6}\pi$, $\frac{11}{6}\pi$
		B1	Symmetry in <i>y</i> -axis
	63	B1	$\left(\frac{1}{2}, 0\right)$ on initial line
	.5 05	B1	Correct upper portion
	2002	B1 [6]	Correct lower portion
(ii)	$A = \left(\frac{1}{2}\right) \int_{0}^{2\pi} \left(\frac{1}{2} + \sin\theta\right)^{2} d\theta$	M1	Penalise incorrect multiples with final A0
	$= \frac{1}{2} \int_{0}^{2\pi} \left(\frac{1}{4} + \sin \theta + \frac{1}{2} - \frac{1}{2} \cos 2\theta \right) d\theta$	M1	Double-angle formula
	$A = \left(\frac{1}{2}\right) \int_{0}^{2\pi} \left(\frac{1}{2} + \sin\theta\right)^{2} d\theta$ $= \frac{1}{2} \int_{0}^{2\pi} \left(\frac{1}{4} + \sin\theta + \frac{1}{2} - \frac{1}{2}\cos 2\theta\right) d\theta$ $= \frac{1}{2} \left[\frac{3}{4}\theta - \cos\theta - \frac{1}{4}\sin 2\theta\right]_{0}^{2\pi}$	A1	correctly integrated 3 suitable terms
	$=\frac{3}{4}\pi$	A1 [4]	

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U – May/June 2016	9795	01

Question	Answer	Marks	Notes
11 (i)	$F_3 = 2$, $F_4 = 3$, $F_5 = 5$, $F_6 = 8$	B1	all
(**)	$1 + 1 \times 2$	[1]	
(II) (a)	$p_2(x) = 1 + \frac{1}{x+1} = \frac{1}{x+1}$	B1	
	$p_{2}(x) = 1 + \frac{1}{x+1} = \frac{x+2}{x+1}$ $p_{3}(x) = \frac{2x+3}{x+2}$ $p_{4}(x) = \frac{3x+5}{2x+3}$ $p_{n}(x) = \frac{F_{n} x + F_{n+1}}{F_{n-1} x + F_{n}}$	B1	
	$p_4(x) = \frac{3x+5}{2x+3}$	B1 [3]	(AG))
	$F_n(x) = F_n x + F_{n+1}$		
(b)	$P_n(x) - \frac{1}{F_{n-1} x + F_n}$	B1	
	Result is true for $n = 2$ (and 3 and 4)	B1	May be mentioned in later in their
	Assuming $p_k(x) = \frac{F_k x + F_{k+1}}{F_{k-1} x + F_k}$ (not separate		"round up"
	from their conjecture)		
	$p_{k+1}(x) = 1 + \frac{F_{k-1} x + F_k}{F_k x + F_{k+1}}$	M1	
	$= \frac{F_k \ x + F_{k+1}}{F_k \ x + F_{k+1}} + \frac{F_{k-1} \ x + F_k}{F_k \ x + F_{k+1}}$		
	$= \frac{(F_k + F_{k-1}) x + (F_k + F_{k+1})}{F_k x + F_{k+1}}$	M1	Collecting coeffts. into successive Fib. terms
	$= \frac{F_{k+1} x + F_{k+2}}{F_k x + F_{k+1}}$	A1	
	which is the required formula with $n = k + 1$.	F.63	
	Accept this as sufficient that proof follows by induction.	[5]	

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U – May/June 2016	9795	01

Q	uestion	Answer	Marks	Notes
12	(i)	$y = \ln\left(\tanh\frac{1}{2}x\right) \implies \frac{dy}{dx} = \frac{1}{\tanh\frac{1}{2}x} \cdot \frac{1}{2}\operatorname{sech}^2\frac{1}{2}x$	M1A1	
		$= \operatorname{cosech} x$	A1 [3]	(AG)
	(ii) (a)	$L_n = \int_{n}^{2n} \sqrt{1 + \operatorname{cosech}^2 x} \mathrm{d}x$	M1	
		$L_n = \int_{n}^{2n} \sqrt{1 + \operatorname{cosech}^2 x} dx$ $= \int_{n}^{2n} \coth x dx$	A1	
		$= \left[\ln(\sinh x)\right]$	A1	correct integrn.
		$\ln\left(\frac{\sinh 2n}{\sinh n}\right) = \ln\left(\frac{e^{2n} - e^{-2n}}{e^n - e^{-n}}\right)$	M1	
		$\approx \ln\left(\frac{e^{2n}}{e^n}\right)$, for large n , $= \ln\left(e^n\right) = n$	A1	legitimately
		OR	[5]	
		$\ln\left(\frac{\sinh 2n}{\sinh n}\right) = \ln\left(2\cosh n\right) = \ln\left(e^n + e^{-n}\right) \mathbf{M1}$		
		$\approx \ln(e^n)$ for large n , $= n$ A1		legitimately
	(b)	Method (sketch or statement) to indicate that <i>C</i> asymptotically "merges" with the <i>x</i> -axis	M1	
		so that C is approximately a horizontal straight- line from $(n, 0)$ to $(2n, 0)$	A1	
			[2]	
13	(i) (a)	Let $y = \sec^{-1} x$, i.e. $\sec y = x$ $\Rightarrow \cos y = \frac{1}{x} \Rightarrow y = \cos^{-1} \left(\frac{1}{x}\right)$	B1	
		Then $\frac{d}{dx}(\sec^{-1}x) = \frac{d}{dx}(\cos^{-1}\frac{1}{x})$		
		$= -\frac{1}{\sqrt{1 - (1/x)^2}} \times \frac{-1}{x^2}$	M1	(Using MF20 and the Chain Rule)
		$=\frac{1}{x\sqrt{x^2-1}}$	A1 [3]	(AG)
		[Allow M1 A1 for valid non-"deduced" approaches]		

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U – May/June 2016	9795	01

Question	Answer	Marks	Notes
(b)	$\int \sec^{-1} x \cdot 1 dx$	M1	Use of integration by "parts"
	$= x \cdot \sec^{-1} x - \int x \cdot \frac{1}{x\sqrt{x^2 - 1}} dx$	A1 A1	
	$= \left[x \cdot \sec^{-1} x - \cosh^{-1} x \right]$	A1 [4]	Condone lack of "+ C"
(ii) (a)	$\frac{1}{x\sqrt{x^2 - 1}} = \frac{1}{\sqrt{2}} \implies x^2 (x^2 - 1) = 2$		
	$\Rightarrow x^4 - x^2 - 2 = (x^2 - 2)(x^2 + 1) = 0$	M1	
	$\Rightarrow x = \sqrt{2}$ and $y = \frac{1}{4}\pi$	A1 A1	i.e. $P = (\sqrt{2}, \frac{1}{4}\pi)$
	$Q(c,0) \qquad \sqrt{2}$ $\frac{\frac{1}{4}\pi}{\sqrt{2}-c} = \frac{1}{\sqrt{2}}$ $c = \sqrt{2} - \frac{\pi\sqrt{2}}{4}$	M1 A1 A1 [6]	or by $y - \frac{1}{4}\pi = \frac{1}{\sqrt{2}}(x - \sqrt{2})$ & $y = 0$ i.e. $Q = \left(\sqrt{2} - \frac{\pi\sqrt{2}}{4}, 0\right)$
(b)	Area $\Delta = \frac{1}{2} \times \frac{\pi\sqrt{2}}{4} \times \frac{\pi}{4} = \frac{\pi^2\sqrt{2}}{32}$	B1	
	Area under curve = $\sqrt{2}$. $\frac{\pi}{4} - \ln(1 + \sqrt{2})$	B1	using (iii)'s answer and the limits $(1, \sqrt{2})$
	Then $R = \frac{\pi^2 \sqrt{2}}{32} - \frac{\pi \sqrt{2}}{4} + \ln(1 + \sqrt{2})$	M1	Difference in areas
	$= \ln\left(1+\sqrt{2}\right) - \frac{\pi(8-\pi)\sqrt{2}}{32}$	A1 [4]	(AG)