FURTHER MATHEMATICS

Paper 2 Further Applications of Mathematics
MARK SCHEME
Maximum Mark: 120

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$,
Cambridge International A and AS Level components and some Cambridge O Level components.

[^0]| Page 1 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
| | Cambridge Pre-U - May/June 2016 | 9795 | $\mathbf{0 2}$ |

4 (i) (ii) (a) (b)	Number of goals scored by home team is independent of number of goals scored by away team $\begin{gathered} \mathrm{e}^{-4.2 n}\left(1+4.2 n+\frac{(4.2 n)^{2}}{2!}+\frac{(4.2 n)^{3}}{3!}\right) \\ \mathrm{e}^{-2.4} \mathrm{e}^{-1.8}(1+2.4 \times 1.8) \\ =\mathbf{0 . 0 7 9 8} \end{gathered}$		Not just goals independent. Extras, including conditions already implied by given Poisson distributions: B0 Po(4.2n) implied Correct ± 1 term Fully correct expression, aef. SR Po(4.2): Fully correct formula B1 Individual Poisson distributions multiplied Correct expression $\quad[=0.0150+0.0647]$ Answer, a.r.t. 0.080 [0.07977]
5 (i) (ii) (iii)	n large p close to $1 / 2$ $\begin{aligned} & \frac{24.5-\mu}{\sigma}=\Phi^{-1}(0.8282)=0.947 \\ & \frac{27.5-\mu}{\sigma}=\Phi^{-1}(0.9697)=1.759 \end{aligned}$ $\begin{array}{r} \mu=\mathbf{2 1}, \sigma=\mathbf{3 . 6 9} \\ q=n p q / n p=21 / 3.694^{2} \quad[=0.65] \end{array}$ $p=\mathbf{0 . 3 5}, n=\mathbf{6 0}$		Or $n p>5$ $n q>5[\text { not } n p q>5]$ One standardised, $=\Phi^{-1}$, allow $\sigma^{2}, \mathrm{cc}, 1-$ errors LHS of both equations correct including signs and cc Both z-values correct to $3 \mathrm{sf}, \pm 1$ in third dp Solve to find both μ and σ μ, a.r.t. 21.0; σ, in range [3.69, 3.70] Correct method of solution for n, p or q, allow $\sqrt{ } n p q$ $n p q=\sigma^{2}$ [not $\left.\sigma\right]$, ft on their $n p q[13.65]$ p, a.r.t. 0.350 and $n=60$ [integer] only [not 60.0]
6 (i) (ii) (iii)	$\begin{aligned} & \int_{0}^{\infty} 4 x \mathrm{e}^{-2 x} \mathrm{e}^{t x} \mathrm{~d} x=\int_{0}^{\infty} 4 x \mathrm{e}^{-(2-t) x} \mathrm{~d} x \\ & =\left[\frac{4 x \mathrm{e}^{-(2-t) x}}{(t-2)}\right]_{0}^{\infty}+\int_{0}^{\infty} \frac{4 \mathrm{e}^{-(2-t) x}}{2-t} \mathrm{~d} x \\ & {\left[-\frac{4 \mathrm{e}^{-(2-t) x}}{(2-t)^{2}}\right]_{0}^{\infty}=\frac{4}{(2-t)^{2}}} \\ & t<2 \\ & {\left[\frac{4}{(2-t)^{2}}\right]^{3}=\frac{64}{(2-t)^{6}}} \\ & =\left(1-\frac{1}{2} t\right)^{-6}=1+3 t+\frac{21}{4} t^{2}+\ldots \\ & \mathrm{E}(Y)=\mathbf{3} \\ & \mathrm{E}\left(Y^{2}\right) / 2=21 / 4 \text { so } \mathrm{E}\left(Y^{2}\right)=10.5 \\ & \operatorname{Var}(Y)=10.5-3^{2}=\mathbf{1} .5 \end{aligned}$	M1 A1 M1 A1 A1 [5] B1 [1] M1 A1 M1 A1 M1 A1 [6]	Attempt $\int \mathrm{e}^{t x} \mathrm{f}(x) \mathrm{d} x$, limits somewhere Combine into single e term Use parts, right way round Correct indefinite integral Correct final answer, cwo, allow $(t-2)^{2}$ but must use integral that visibly converges, or otherwise indicate the issue $\left[M_{X}(t)\right]^{3}$ [Not cubed: M0A0 M1A0 M1A0] Series expansion or differentiate once $M^{\prime}(t)=\frac{384}{(2-t)^{7}}, M^{\prime \prime}(t)=\frac{2688}{(2-t)^{8}}$ $\mathrm{E}(Y)=3$ correctly obtained or implied $2 \times$ coeff of t^{2} or $\mathrm{M}^{\prime \prime}(0)-\left[\mathrm{M}^{\prime}(0)\right]^{2}$ $\operatorname{Var}(Y)=1.5$ or exact equivalent, cwo

$7 \quad$ (i) (ii) (iii)	$\begin{align*} & \int_{0}^{k} x \frac{3 x^{2}}{k^{3}} \mathrm{~d} x=3 / 4 k \\ & E\left(\frac{4}{3} X\right)=k \text {, so } \frac{4}{3} X \text { unbiased AG } \\ & \mathrm{P}(X \leq x)=\int_{0}^{k} \frac{3 x^{2}}{k^{3}} \mathrm{~d} x=\left(\frac{x^{3}}{k^{3}}\right) \\ & \mathrm{P}(M \leq m)=\left(\frac{x^{3}}{k^{3}}\right)^{3}=\frac{x^{9}}{k^{9}} \\ & \mathrm{f}_{M}(x)=9 \frac{x^{8}}{k^{9}} \quad \text { AG } \tag{AG}\\ & \int_{0}^{k} x 9 \frac{x^{8}}{k^{9}} \mathrm{~d} x \quad=\frac{9}{10} k \end{align*}$ Hence $E_{2}=\frac{10}{9} M$	$\begin{array}{\|lll} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } & \\ & & {[3]} \\ \text { B1 } & \\ & \\ \text { M1 } & \\ & \\ \text { M1 } & \\ \text { A1 } & \\ & & {[4]} \\ & & \\ \text { M1 } & \\ \text { A1 } \\ \text { A1ft } \\ & {[3]} \\ \hline \end{array}$	Attempt $\operatorname{Xxf}(x)$, correct limits $3 / 4 k$, ae exact f Must state "unbiased" Needs convincing derivation $\left[\mathrm{F}_{X}(x)\right]^{3}$ Differentiate Full derivation of AG. Ignore other ranges Attempt $\int_{x f_{M}(x) \text {, ignore limits }}$ Correct E(M) If $\mathrm{E}(M)=k c$, allow M / c
8	$\begin{aligned} & \text { PE lost }=0.4 \mathrm{~g} \times 3 \sin 20^{\circ} \\ & \text { Initial } \mathrm{KE}=1 / 2 \times 0.4 \times 0.5^{2} \quad[0.05] \\ & \text { Final } \mathrm{KE}=1 / 2 \times 0.4 \times 2.5^{2} \quad[1.25] \\ & \text { Difference }=\text { Work done by } \\ & \text { friction } \\ & \quad 2.9045=3 F \\ & \text { Therefore } F=\mathbf{0 . 9 6 8} \mathrm{N} \end{aligned}$	M1 M1 M1 M1 A1 [5]	$m g h$ attempted, with trig Both KEs attempted Work/Energy principle used, no extra/missing terms Use $\Delta E=F \times s$ Answer, a.r.t. 0.968 [SC: Energy not used: answer B2]
9 (i) (ii)		M1 M1 A1 A1 [4] B1 M1 A1 A1 [4]	Resolve vertically for 1.5 kg mass, can be implied e.g. by $T=15$ Resolve vertically for 1.2 kg mass Value of $\cos \theta \quad\left[\theta=36.9^{\circ}\right]$ Correct value of h Value of T used $[=15]$ Resolve horiz for P and use $r \omega^{2}$ or v^{2} / r Correct equation, and $v=r \omega$ if v used Answer, in range $[7.9,7.91]$ or $\frac{5}{2} \sqrt{10}$

10 (i)	$\begin{aligned} & N=80 \\ & \mathrm{M}(X): F \times 5 \sin \theta=80 \times 2.5 \cos \theta \\ & F \leq 0.4 N \\ & \tan \theta \geq 1.25 \\ & \quad \theta_{\min }=\mathbf{5 1 . 3 ^ { \circ }} \text { or } 51.4^{\circ}, 0.896 \\ & \\ & F \times 5 \sin \theta=(80 \times 2.5+750 d) \cos \theta \\ & \text { Use } 60^{\circ} \text { and } \mu \text { to obtain } \\ & \quad d_{\text {max }}=\mathbf{3 . 5 7} \end{aligned}$	B1 M1 M1 M1 A1 [5] M1* depM1 A1 [3]	Normal force at ground (can be implied) Moments about any point, needs both cos and \sin A: $R \times 5 \sin \theta=80 \times 2.5 \cos \theta$ $[R=F=0.4 N=32]$ M: $R \times 2.5 \sin \theta+\mathrm{F} \times 2.5 \cos \theta=N \times 2.5 \cos \theta$ Use $F \leq \mu N$ or $F=\mu N$ Solve equations to obtain $\tan \theta$ Correct answer, in range [51.3, 51.4] or a.r.t. 0.896 Moments equation with variable (d) $[F=332]$ $[332 \times 5 \times 0.5=100 \sqrt{ } 3+337 \sqrt{ } 3 d]$ Answer, a.r.t. 3.57 or 3.56
11 (i) (ii)	Driving force $=32000 / v$ $\begin{aligned} & 800 \frac{\mathrm{~d} v}{\mathrm{~d} t}=\frac{32000}{v}-20 v \\ & \frac{\mathrm{~d} v}{\mathrm{~d} t}=\frac{1600-v^{2}}{40 v} \end{aligned}$ AG $\begin{align*} & \int \frac{40 v}{1600-v^{2}} \mathrm{~d} v=\int \mathrm{d} t \\ & c-20 \ln \left(1600-v^{2}\right)=t \\ & c=20 \ln 1600 \tag{147.56}\\ & t=20 \ln \left(\frac{1600}{1600-v^{2}}\right) \\ & v=40 \sqrt{1-e^{-t / 20}} \end{align*}$ Tends to 40		Use P / v and differential equation including $\mathrm{d} v / \mathrm{d} t$ Correctly obtain AG, need to use 800 convincingly Separate variables and attempt to integrate Correct indefinite integral, aef Correct value of c Make v subject, using e, allow v^{2} Correct expression for v, aef Conclusion, cwo but can get from implicit formula
12 (i)	$\operatorname{Mom}^{\mathrm{m}}(\rightarrow): m u \cos 30=m w+m x$ Rest ${ }^{\mathrm{n}}: \quad x-w=0.9 \sqrt{ } 3 u / 2$ Solve: $w=0.0433 u$ $\operatorname{Mom}^{m}(\uparrow): m u \sin 30=v m$ so $v=0.5 u$ \Rightarrow direction is $\tan ^{-1}(0.5 / 0.0433)$ $=85.05^{\circ}$ to x-axis $u \cos 30=w+x$, ue $\cos 30=x-w$ $\Rightarrow 2 w=u \cos 30(1-e)$ but $e \leq 1$ so w cannot be negative		$\left[\frac{\sqrt{3}}{2} u=w+x\right]$ C of M equation, needn't have m, ignore signs, needs \cos and \sin Restitution equation, ignore signs of LHS Correctly obtain $w=$ a.r.t. $0.0433 u[=\sqrt{ } 3 u / 40]$ Obtain, state, or use $v=u / 2$ Direction, $\left[85.0^{\circ}, 85.1^{\circ}\right]$ to x-axis $\left(5^{\circ}\right.$ or 4.9° to y) One general equation Second equation, and use $e \leq 1$ Correctly deduce given conclusion

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U - May/June 2016	$\mathbf{9 7 9 5}$	$\mathbf{0 2}$

[^0]: ® IGCSE is the registered trademark of Cambridge International Examinations.

