

Cambridge International Examinations Cambridge Pre-U Certificate

FURTHER MATHEMATICS

9795/02 May/June 2016

Paper 2 Further Applications of Mathematics MARK SCHEME Maximum Mark: 120

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 3 Pre-U Certificate.

This document consists of 7 printed pages.

CAMBRIDGE International Examinations

Page 1		Mark Scheme			Syllabus	Paper
		Cambridge Pre-U –	ambridge Pre-U – May/June 2016		9795	02
1	(i)	$75 \pm 1.96 \sqrt{\frac{40^2}{500} \times \frac{500}{499}} = (71.5, 78.5)$	M1 B1 A1 A1 [4]	$75 \pm zs$, <i>s</i> involving 500 z = 1.96, allow from no 5 Variance correct Both limits correct to 3sf		ondone mission f $\frac{500}{499}$
	(ii)	No, as the Central Limit Theorem applies <i>OR</i> as <i>n</i> is large	B1 [1]	"No" and mention CLT or large sample size; focus on different distributions; no irrelevancies		
2	(i)	N(120, $\sigma^2 = 0.8^2 \times 1200 [= 768]$ $1 - \Phi((140 - 120)/\sqrt{768})$ = 0.235(3)	M1 M1 A1 A1 [4]	Normal, mean 120 or 1.2 Allow 0.8×1200 etc Both parameters correct Answer, in range [0.235, OR: P(≥ 175) from N(175 - 150)/√120 0.235(3)	0 0.236] (150, 200) 00	M1 A1 A2
	(ii)	$B_1 + B_2 + B_3 + B_4 - S_1 - S_2 - S_3$ ~ N(60,) Variance 4×1200 + 3×1500 = 9300 $\Phi\left(\frac{0-60}{\sqrt{9300}}\right) = \Phi(-0.622) = 0.267$	M1 M1 A1 A1 [4]	Consider $\pm (B_1 + B_2 + B_3 + B_3)$ Normal, mean 60 Correct variance Answer, a.r.t. 0.267 [[NB: $\Phi(-60/\sqrt{33700}) = 0$	<i>B</i> ₄ - <i>S</i> ₁ - <i>S</i> ₂ - o [0.2699] .3700 is 2/4]	$-S_{3}$) r 4 <i>B</i> - 3 <i>S</i>
3	(i)	$\sum_{r=0}^{n} t^{r} P(r) = \sum_{r=0}^{n} t^{r} C_{r} p^{r} (1-p)^{n-r}$ $= \sum_{r=0}^{n} (pt)^{r} C_{r} (1-p)^{n-r}$ $= (1-p+pt)^{n} AG$	M1 A1 A1 [3]	Use $\Sigma t^r P(R = r)$ and binomial Indicate correct final term Collect p^r and t^r and correct expression $OR \qquad (1 - p + pt)^1$, M1	mial probab n ectly obtain A1; answer,	ilities given A1
	(11)	$ \begin{pmatrix} \frac{3}{4} + \frac{1}{4}t \end{pmatrix}^8 \left(\frac{1}{4} + \frac{3}{4}t\right)^8 = (3+t)^8 (1+3t)^8 / 4^{16} = \left(\frac{3}{16} + \frac{1}{16}t(10+3t)\right)^8 $ AG = $\left(\frac{3}{16}\right)^8 (1 + \left[\frac{10}{3} + t\right]t)^8 $	A1	Correctly obtain given ar	iswer	1
		t term: $\left(\frac{3}{16}\right)^{\circ} \left\lfloor 8 \times \frac{10}{3} \right\rfloor = 4.07 \times 10^{-5}$	A1 [5]	Select <i>t</i> term; method for Answer <i>OR</i> : attempt to find G $8(\frac{3}{16})^8(\frac{10}{3}+2t)(1-t)^{-5}$	expansion f f'(0) $+\left[\frac{10}{3}+t\right]t)^7$	M1 A1 A1

Ρ	age 2	Mark Scheme			Syllabus	Paper
		Cambridge Pre-U – May/June 2016		9795	02	
4	(i)	Number of goals scored by home team is independent of number of goals scored by away team	B1 [1]	Not just <i>goals</i> independent. Extras, including conditions already implied by given Poisson distributions: B0		
	(ii) (a) $e^{-4.2n}(1+4.2n+\frac{(4.2n)^2}{2!}+\frac{(4.2n)^2}{3!}$		M1 A1 A1 [3]	Po $(4.2n)$ implied Correct ± 1 term Fully correct expression, aef. SR Po (4.2) : Fully correct formula B1		
	(b)	$e^{-2.4}e^{-1.8}(1+2.4\times1.8)$ = 0.0798	M1 A1 A1 [3]	Individual Poisson distril Correct expression Answer, a.r.t. 0.080	butions mult [= 0.0150 + 0 [0.07977]	iplied 0.0647]
5	(i)	<i>n</i> large p close to $\frac{1}{2}$	B1 B1 [2]	Or <i>np</i> > 5 <i>nq</i> > 5 [<i>not npq</i> > 5]		
	(ii)	$\frac{24.5 - \mu}{\sigma} = \Phi^{-1}(0.8282) = 0.947$ $\frac{27.5 - \mu}{\sigma} = \Phi^{-1}(0.9697) = 1.759$ $\mu = 21, \ \sigma = 3.69$	M1 A1 B1 M1 A1 [5]	One standardised, = Φ^{-1} , errors LHS of both equations co and cc Both <i>z</i> -values correct to Σ Solve to find both μ and μ , a.r.t. 21.0; σ , in range	allow σ^2 , construction orrect includ 3 sf, ± 1 in the σ [3.69, 3.70]	e, 1– ing signs hird dp
	(iii)	$q = npq/np = 21/3.694^2$ [= 0.65] p = 0.35, n = 60	M1 A1ft A1 [3]	Correct method of solution \sqrt{npq} $npq = \sigma^2$ [not σ], ft on the p, a.r.t. 0.350 and $n = 60$ 60.0]	on for <i>n</i> , <i>p</i> of heir <i>npq</i> [13.6 [integer] <i>on</i>	• q, allow 55] ly [not
6	(i)	$\int_{0}^{\infty} 4x e^{-2x} e^{tx} dx = \int_{0}^{\infty} 4x e^{-(2-t)x} dx$ $= \left[\frac{4x e^{-(2-t)x}}{(t-2)}\right]_{0}^{\infty} + \int_{0}^{\infty} \frac{4e^{-(2-t)x}}{2-t} dx$ $\left[-\frac{4e^{-(2-t)x}}{(2-t)^{2}}\right]_{0}^{\infty} = \frac{4}{(2-t)^{2}}$	M1 A1 M1 A1 A1 [5]	Attempt $\int e^{tx} f(x) dx$, limits Combine into single e ter Use parts, right way rour Correct indefinite integra Correct final answer, cwo must use integral that vis otherwise indicate the iss	somewhere rm nd al o, allow (<i>t</i> – sibly converg sue	2) ² but tes, or
	(ii)	<i>t</i> < 2	B1 [1]			
	(iii)	$\left[\frac{4}{(2-t)^2}\right]^3 = \frac{64}{(2-t)^6}$ $= (1-\frac{1}{2}t)^{-6} = 1+3t+\frac{21}{4}t^2+\dots$	M1 A1 M1	$[M_{X}(t)]^{3}$ [Not cubed: M04 Series expansion <i>or</i> difference of $M'(t) = \frac{384}{(2-t)^{7}}$	A0 M1A0 M eventiate once $M''(t) = \frac{26}{(2 - t)^2}$	$\frac{1A0]}{88}$
		E(Y) = 3 $E(Y^2)/2 = 21/4$ so $E(Y^2) = 10.5$ $Var(Y) = 10.5 - 3^2 = 1.5$	A1 M1 A1	$E(Y) = 3 \text{ correctly obtain} 2 \times \text{coeff of } t^2 \text{ or } M''(0) - Var(Y) = 1.5 \text{ or exact equ}$	ed or implied - [M'(0)] ² uivalent, cwo	d ,
			[0]			

Pa	age 3	Mark Scheme				Paper
		Cambridge Pre-U – May/June 2016		9795	02	
7	(i)	$\int_0^k x \frac{3x^2}{k^3} dx = \frac{3}{4k}$ $E(\frac{4}{3}X) = k, \text{ so } \frac{4}{3}X \text{ unbiased AG}$	M1 A1 A1	Attempt $\int xf(x)$, correct lin ³ / ₄ k, ae exact f Must state "unbiased"	mits	
	(ii)	$P(X \le x) = \int_0^k \frac{3x^2}{k^3} dx = \left(\frac{x^3}{k^3}\right)$	B1	Needs convincing deriva	tion	
		$P(M \le m) = \left(\frac{x^3}{k^3}\right)^2 = \frac{x^9}{k^9}$	M1 M1	$[F_{X}(x)]$ Differentiate		
		$f_M(x) = 9\frac{x^\circ}{k^9} \qquad AG$	A1 [4]	Full derivation of AG. Ignore other ranges		
	(iii)	$\int_0^k x9 \frac{x^8}{k^9} dx = \frac{9}{10}k$ Hence $E_2 = \frac{10}{9}M$	M1 A1 A1ft [3]	Attempt $\int x f_M(x)$, ignore li Correct $E(M)$ If $E(M) = kc$, allow M/c	imits	
8		PE lost = $0.4g \times 3 \sin 20^{\circ}$ [4.104] Initial KE = $\frac{1}{2} \times 0.4 \times 0.5^{2}$ [0.05] Final KE = $\frac{1}{2} \times 0.4 \times 2.5^{2}$ [1.25] Difference = Work done by friction	M1 M1 M1	<i>mgh</i> attempted, with trig Both KEs attempted Work/Energy principle u terms	sed, no extra	/missing
		2.9045 = 3F Therefore $F = 0.968$ N	M1 A1 [5]	Use $\Delta E = F \times s$ Answer, a.r.t. 0.968 [SC: Energy not	used: answer	· B2]
9	(i)	$R(\uparrow_{Q}): T-1.5g = 0 \qquad [T=15]$ $R(\uparrow_{P}): T\cos\theta - 1.2g = 0$ $[15\cos\theta = 12]$ $\Rightarrow \cos\theta = 0.8$ Distance below = 0.12/tan θ $= 0.16$ m	M1 M1 A1 A1 [4]	Resolve vertically for 1.5 implied e.g. by 7 Resolve vertically for 1.2 Value of $\cos \theta$ Correct value of <i>h</i>	5 kg mass, ca T = 15 2 kg mass $[\theta = 36.9^{\circ}]$	n be
	(ii)	$T = 1.5g$ $R(\rightarrow_{P}): T \sin\theta = 1.2r\omega^{2} [=9]$ $\Rightarrow 1.5g \sin\theta = 1.2 \times 0.12 \times \omega^{2}$ $[a = 7.5]$ $\Rightarrow \qquad \omega = \sqrt{62.5} = 7.91 \text{ rad s}^{-1}$	E ^[4] B1 M1 A1 A1 [4]	Value of <i>T</i> used [= 15] Resolve horiz for <i>P</i> and v Correct equation, and v = Answer, in range [7.9, 7.	use $r\omega^2$ or v^2 = $r\omega$ if v used 91] or $\frac{5}{2}\sqrt{10}$	/r

Page 4		Mark Scheme			Syllabus	Paper	
		Cambridge Pre-U –	May/Jur	ne 2016	9795 02		
10	(i)	N = 80 M(X): $F \times 5 \sin \theta = 80 \times 2.5 \cos \theta$	B1 M1	Normal force at ground (Moments about any poin	ce at ground (can be implied) bout any point, needs both cos and		
				sin A: $R \times 5 \sin \theta = 80 \times 2.5 \cos \theta$	θ [$R = F = 0.4$	N = 321	
		E < 0.4N	M1	<i>M</i> : $R \times 2.5 \sin \theta + F \times 2.5 \cot \theta$ Use $E \le uN$ or $E = uN$	$R \times 2.5 \sin \theta + F \times 2.5 \cos \theta = N \times 2.5 \cos \theta$		
			MI	$C_{1} = \mu V O_{1} = \mu V$	$\mu \nu \text{ or } \Gamma = \mu \nu$		
		$\tan \theta \ge 1.25$ $\theta_{\min} = 51.3^{\circ} \text{ or } 51.4^{\circ}, 0.896$	A1	Correct answer, in range 0.896	e equations to obtain $\tan \theta$ ect answer, in range [51.3, 51.4] or a.r.t. 6		
	(ii)	$F \times 5\sin \theta = (80 \times 2.5 + 750d) \cos \theta$ Use 60° and μ to obtain	[5] M1* depM1	Moments equation with $[332 \times 5 \times 0.5 = 10]$	Its equation with variable (d) $[F = 332]$ [332×5×0 5 = 100 $\sqrt{3}$ + 337 $\sqrt{3}$ d]		
		$d_{\rm max} = 3.57$	A1 [3]	Answer, a.r.t. 3.57 or 3.56			
11	(i)	Driving force = $32000/v$ $800\frac{dv}{dt} = \frac{32000}{v} - 20v$	M1	Use P/v and differential dv/dt	equation incl	uding	
		$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{1600 - v^2}{40v} \qquad \mathbf{AG}$	A1 [2]	Correctly obtain AG, nee convincingly	ed to use 800		
	(ii)	$\int \frac{40v}{1600 - v^2} dv = \int dt$ $c - 20 \ln(1600 - v^2) = t$ $c = 20 \ln 1600 \qquad [147.56]$	M1 A1 A1	Separate variables and at Correct indefinite integra Correct value of <i>c</i>	tempt to inte al, aef	grate	
		$t = 20 \ln \left(\frac{1600}{1600 - v^2} \right)$ $v = 40\sqrt{1 - e^{-t/20}}$	M1 A1	Make <i>v</i> subject, using e, allow v^2 Correct expression for <i>v</i> , aef			
		Tends to 40	B1	Conclusion, cwo but can get from implicit formula		plicit	
			[6]				
12	(i)	$\frac{u/2}{\sqrt{3}u/}$ $\frac{v}{w}$ $\frac{x}{x}$		$\left[\frac{\sqrt{3}}{2}u = w + x\right]$			
		$Mom^{m} (\rightarrow): mu \cos 30 = mw + mx$	M1	C of M equation, needn's signs, needs cos	t have <i>m</i> , ign and sin	ore	
		Rest ⁿ : $x - w = 0.9\sqrt{3u/2}$ Solve: $w = 0.0433u$ Mom ^m (\uparrow): $mu \sin 30 = vm$ so v = 0.5u	M1 A1 B1	Restitution equation, ign Correctly obtain $w = a.r.t$ Obtain, state, or use $v = a$	ore signs of] t. 0.0433 <i>u</i> [= u/2	LHS = $\sqrt{3u/40}$]	
		$\Rightarrow \text{ direction is } \tan^{-1}(0.5/0.0433)$ $= 85.05^{\circ} \text{ to } x\text{-axis}$	A1 [5]	Direction, $[85.0^{\circ}, 85.1^{\circ}]$ to <i>y</i>)	to <i>x</i> -axis (5°	or 4.9°	
	(ii)	$u \cos 30 = w + x, ue \cos 30 = x - w$ $\Rightarrow 2w = u \cos 30(1 - e) \text{ but } e \le 1$ so w cannot be negative	M1 M1 A1 [3]	One general equation Second equation, and use Correctly deduce given c	$e e \leq 1$ conclusion		

Page 5	Mark Scheme			Syllabus	Paper
	Cambridge Pre-U – May/June 2016			9795	02
13 (i)	Solution 1: <i>V</i> , <i>H</i>				
	$y = 30t \sin 50^{\circ} - 5t^{2}; x = 30t \cos 50^{\circ}$ [y = 26.2] x = 48.2	M1A1 A1	Both equations attempted Correct value of x SC: If M0, $y = 20$	l; both corre 6.2 gets B1	ct
	Height of slope = $x \tan 10^\circ = 8.5$ Difference = 17.7	M1 A1 [5]	Find height Correct answer [17.703]		
	Solution 2: ∥, ⊥				
	$y = 30t \sin 40^{\circ} - 5t^{2} \cos 10^{\circ}$ $= 17.43$ Height above field = $y \div \cos 10^{\circ}$ $= 17.7$	M1A1 A1 M1 A1			
(ii)	Solution 1: <i>V</i> , <i>H</i>				
	$30t \sin 50^{\circ} - 5t^{2} = 30t \cos 50^{\circ} \tan 10^{\circ}$ t = 3.916 $PX = 30t \cos 50^{\circ} \div \cos 10^{\circ}$ X = 76.7	M1 A1 M1 A1 [4]	Put $y = x \tan 10^\circ$ and solv Correct value of t, can be Calculate $x \div \cos 10^\circ$ or y X, a.r.t. 76.7 [76.684]	ve e implied v ÷ sin 10°	
	Solution 2: ∥, ⊥				
	$Y = 30t \sin 40^{\circ} - 5t^{2} \cos 10^{\circ}$ $Y = 0 \text{ at} \qquad t = 3.916$ $X = 30t \cos 40^{\circ} - 5t^{2} \sin 10^{\circ}$ PX = 76.7	M1 A1 A1 A1	Y equation, allow sign/tri Correct value of t , can be X equation, allow sign/tri X, a.r.t. 76.7 [76.684]	g errors (3 to implied ig errors (3 to	erms) erms)
	Solution 3: traj $Y = X \tan 50 - \frac{10X^2 \sec^2 50}{2 \times 30^2}$ $= x \tan 10^\circ$	M1 A1	Use trajectory equation All correct		
	$PX = 180(\tan 50 - \tan 10)\cos^2 50 =$ 76.7	M1 A1	Solve for <i>X</i> <i>X</i> , a.r.t. 76.7 [76.684]		

Page 6	Mark Scheme			Syllabus	Paper
	Cambridge Pre-U – May/June 2016		9795	02	
		T	[
14 (i)	$T - mg = 0 \implies \frac{3}{0.5} \times e = 0.3g$	M1	Use N2 for equilibrium		
	$\Rightarrow e = 0.5$	A1 [2]	Equilibrium extension 0.5, a.r.t. 0.500		
(ii)	GPE lost = EPE gained: $3(0.5 + x) = \frac{1}{2} \frac{3}{0.5} x^2$ [= 3x ²] Solve to get $x = \frac{1 + \sqrt{3}}{2} = 1.37$	M1* depM1 A1	Use cons of energy, need variable on both sides, e.g. $3(1+h) = 3(h+\frac{1}{2})^2$ or $3h = 3(h-\frac{1}{2})^2$ Obtain and solve quadratic equation Correct equation, add/subtract 0.5 etc if necessary		
		A1 [4]	Solve to get a.r.t. 1.37 or	<i>lly</i> , allow sur	rds
(iii)	$0.3\ddot{x} = 0.3g - \frac{3}{0.5}(x+e)$ $\ddot{x} = -20x$	M1 A1 B1 [3]	Use N2 including extens All correct, check signs Obtain correct value of <i>a</i>	ion p^2 , no wrong	working
(iv)	$x = \frac{\sqrt{3}}{2} \cos \sqrt{20}t$ x = 0.5 at ωt = 0.9553 or 5.3279	M1 A1ft M1	Use $x = a \cos \omega t$ or $a \sin \omega t$ $a \operatorname{correct} ft (= \text{their (ii)} - 1)$ Equate to $(\pm)e$ and use constant of $(\pm)e$ and use con	ωt , allow $a =$ their (i)), ω prrect trig me	= 1 from (iii) ethod
	<i>t</i> = 0.2136 or 1.1913 Difference = 0.978	A1 A1 [5]	One correct value of <i>t</i> Correct final answer	[0.9777]	