Cambridge Assessment International Education

Cambridge Pre-U

Cambridge Pre-U Certificate

FURTHER MATHEMATICS

Paper 2 Further Application of Mathematics
May/June 2018
MARK SCHEME
Maximum Mark: 120

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE ${ }^{\top \mathrm{M}}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Question	Answer	Marks	Partial Marks
1(i)	$\mathrm{B}(200,0.2) \approx \mathrm{N}(40,32)$	M1	$\mathrm{N}(40, \ldots)$
	$\Phi\left(\frac{30.5-40}{\sqrt{32}}\right)=\Phi(-1.679)$	A1	variance 32 soi
		M1	standardising
	$=0.0466$	A1	answer in [0.046, 0.047]
1(ii)	$Y \sim \mathrm{~B}(200,0.02) \approx \operatorname{Po}(\ldots$	M1	Poisson, any λ
	...4)	A1	$\lambda($ or $n p)=4$
	$\mathrm{P}(Y \leqslant 3)=0.433$	A1	answer in [0.433, 0.434]
2(i)	Breaks in transmission must occur independently of one another	B1	independent, in context
	and at constant average rate or constant expected rate	B1	'constant average rate' or 'constant expected rate' or 'mean \propto time int'
2(ii)	$X \sim \operatorname{Po}(7.5)$	M1	$\mathrm{Po}(7.5)$ stated or implied
	$\mathrm{P}(6 \leqslant X \leqslant 10)=\mathrm{P}(X \leqslant 10)-\mathrm{P}(X \leqslant 5)$	M1	$\mathrm{Po}, \mathrm{P}(\leqslant 10)-\mathrm{P}(\leqslant 5$ or 6$)$
	$=0.8622-0.2414=0.621$	A1	awrt 0.621
2(iii)	$\mathrm{P}(0)=\mathrm{e}^{-\lambda}$	M1	correct use of $\mathrm{P}(0)$ formula
	$\mathrm{e}^{-1.3 T}=0.6$	A1	$\mathrm{e}^{-k T}$ or $\mathrm{e}^{-\lambda}=0.6$ (provided not clearly incorrect Poisson e.g. Po(8))
	$-1.3 T=\ln (0.6)[=-0.5108]$	M1	dep on first M mark for taking logarithms
	$T(=0.393 \mathrm{~min})=23.6 \mathrm{~s}$	A1	23.6 or 24 s or better
3(i)	$\mathrm{M}^{\prime}(t)=6(1-2 t)^{-4}$	M1	attempt to differentiate $\mathrm{M}(t)$
	$\mathrm{M}^{\prime}(0)=6$ so $\mathrm{E}(X)=6$	A1	6 correctly obtained
	$\mathrm{M}^{\prime \prime}(t)=48(1-2 t)^{-5}\left[\mathrm{M}^{\prime \prime}(0)=48\right]$	M1	attempting $\mathrm{M}^{\prime \prime}(t)$
	Therefore $\operatorname{Var}(X)=48-6^{2}$	M1	$\mathrm{M}^{\prime \prime}(0)-\left[\mathrm{M}^{\prime}(0)\right]^{2}$ used
	$=12$	A1	12 correctly obtained

Question	Answer	Marks	Partial Marks
3(i)	Alternative		
	$M_{X}(t)=1+6 t+\ldots$	M1	attempt to expand:1st 2 terms
	$\mathrm{E}(\mathrm{X})=6$	A1	6 correctly (soi) obtained
	$M_{X}(t)=" 1+6 t "+24 t^{2}+\ldots$	M1	3rd term and using 2!
	Therefore $\operatorname{Var}(X)=2 \times 24-6^{2}$	M1	$\left.\mathrm{E}\left(X^{2}\right)\right)-[\mathrm{E}(X)]^{2}$ used
	$=12$	A1	12 correctly obtained
3(ii)	$Y=X_{1}+X_{2}: \mathrm{M}_{Y}(t)=(1-2 t)^{-6}$	M1	$\left[\mathrm{M}_{X}(t)\right]^{2}$
		M1	attempt to find $\mathrm{M}_{Y}{ }^{\prime \prime \prime}(t)$
	$M_{Y}{ }^{\prime \prime \prime}=2688(1-2 t)^{-9}$	A1	correct expression
	Therefore $\mathrm{E}\left(Y^{3}\right)=M_{Y}{ }^{\prime \prime}(0)=2688$	A1	answer 2688 only
	Alternative 1 $Y=X_{1}+X_{2}: \mathrm{M}_{Y}(t)=(1-2 t)^{-6}$	M1	$\left[\mathrm{M}_{x}(t)\right]^{2}$
		M1	using coefficient of t^{3}
	$\frac{1}{3!} \mathrm{E}\left(Y^{3}\right)=(-2)^{3} \frac{(-6)(-7)(-8)}{1 \times 2 \times 3}$	A1	correct expression inc. 3!
	Therefore $\mathrm{E}\left(Y^{3}\right)=6 \times 7 \times 8^{2}=2688$	A1	answer 2688 only
	Alternative 2 $M_{X}(t)=" 1+6 t+24 t^{2}+"+80 \text { soi }$	M1	genuine attempt at next term
		M1	Dep Attempt to expand and correct use of expectation algebra
	$\mathrm{E}\left(\left(X_{1}+X_{2}\right)^{3}\right)=2 \mathrm{E}\left(X^{3}\right)+6 \mathrm{E}\left(X^{2}\right) \mathrm{E}(X)$ oe	A1	
	$2 \times 480+6 \times 48 \times 6=2688$	A1	answer 2688 only
4(i)	$\mathrm{f}(x)=\frac{3}{8} x^{2}$	M1	attempt to differentiate
	$\int_{0}^{2} \frac{3}{8} x^{2} \cdot x \mathrm{~d} x=\left[\frac{3}{32} x^{4}\right]_{0}^{2}$	M1	$\int x f(x) \mathrm{d} x$ and limits 0,2
	$=1 \frac{1}{2} \mathrm{oe}$	A1	exact answer

Question	Answer	Marks	Partial Marks
4(ii)	$Y=\frac{1}{X^{2}}: \mathrm{P}(Y \leqslant y)=\mathrm{P}\left(\frac{1}{X^{2}} \leqslant y\right)$	M1	appropriate probability statement
	$=\mathrm{P}\left(X \geqslant \frac{1}{\sqrt{y}}\right)$	M1	using inverse function correctly somewhere
	$=1-\mathrm{F}\left(\frac{1}{\sqrt{y}}\right)$ or $1-\frac{1}{8} y^{-\frac{3}{2}}$	M1	$1-\mathrm{F}$ (inverse function)
		M1	differentiating their $\mathrm{F}(y)$ (wrt correct variable)
	$\Rightarrow \mathrm{f}(y)=\frac{3}{16} y^{\frac{-5}{2}}$	A1	correct formula for $\mathrm{f}(\mathrm{y})$, cwo
	for $y \geqslant \frac{1}{4}$ (must be correct variable)	B1	correct range for non-zero f
	Alternative $\mathrm{f}_{Y}(y)=\mathrm{f}_{X}\left(\mathrm{~g}^{-1}(y)\right)\left\|\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{~g}^{-1}(y)\right)\right\|$	B1	statement
	$\mathrm{g}^{-1}(y)=\frac{1}{\sqrt{y}}=y^{-\frac{1}{2}}$	B1	correct inverse function (condone \pm)
	$\mathrm{f}_{X}\left(\mathrm{~g}^{-1}(y)\right)=\frac{3}{8}\left(y^{-\frac{1}{2}}\right)^{2}=\frac{3}{8} y^{-1}$	B1	
	$\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{~g}^{-1}(y)\right)=-\frac{1}{2} y^{-\frac{3}{2}}$	B1	
	$\mathrm{f}_{Y}(y)=\frac{3}{8} y^{-1}\left\|-\frac{1}{2} y^{-\frac{3}{2}}\right\|=\frac{3}{16} y^{-\frac{5}{2}}$	B1	
	for $y \geqslant \frac{1}{4}$ (must be correct variable)	B1	correct range for non-zero f

Question	Answer	Marks	Partial Marks
5(i)	$\bar{t}_{B}=17, \quad \bar{t}_{G}=22.29$	B1	both sample means seen
	$S_{B}^{2}=64\left(S_{B}=8\right), S_{G}{ }^{2}=12.35\left(S_{G}=3.514\right)$	M1	method for finding both $S \mathrm{~s}$ (or $S_{B B}(=768)$ and $S_{G G}(=1210 / 7)$)
	$\hat{\sigma}^{2}=\frac{12 S_{B}^{2}+14 S_{G}^{2}}{12+14-2}=39.20(\hat{\sigma}=6.261)$	M1	proper attempt at pooled variance (no working and wrong M0)
	$\bar{t}_{G}-\bar{t}_{B} \pm 2.064 \sqrt{\hat{\sigma}^{2}\left(\frac{1}{12}+\frac{1}{14}\right)}$	A1	correct variance estimate
		M1	CI with t or z and $\frac{1}{12}+\frac{1}{14}$ soi (5.2857 $\pm(2.064 \times 2.463)$)
		B1	$t=2.064$ used in a CI
	$=(0.202,10.4)(3 \mathrm{sf} \mathrm{or} \mathrm{better} \mathrm{(cwo))}$	A2	A1 for each end-point, allow if both negative (i.e. $(-10.4,-0.202)$)
	Assume distributions of boys' and girls' times normally distributed with common variance oe	B1	
5(ii)	No as 0 is not in the confidence interval	B1	FT
6(i)	$\mathrm{P}(X=r)=\frac{1}{N}$	B1	PDF $\frac{1}{N}$ stated or implied
	$\mathrm{E}(X)=\sum_{x=1}^{N} \frac{1}{N} x=\frac{N(N+1)}{2 N}$	M1	using $\sum x \mathrm{f}(x)$ and $\frac{1}{2} N(N+1)$
	$=\frac{1}{2}(N+1) \quad \mathbf{A G}$	A1	correctly obtaining AG
	$\mathrm{E}\left(X^{2}\right)=\sum_{x=1}^{N} \frac{1}{N} x^{2}=\frac{(N+1)(2 N+1)}{6}$	M1	using $\Sigma x^{2} \mathrm{f}(x)$ and $\frac{1}{6} N(N+1)(2 N+1)$
	$\operatorname{Var}(X)=\frac{(N+1)(2 N+1)}{6}-\left(\frac{N+1}{2}\right)^{2}$	M1	subtracting their $[\mathrm{E}(X)]^{2}$
	$\begin{aligned} & =\frac{1}{12}(N+1)[2(2 N+1)-3(N+1)] \\ & =\frac{1}{12}\left(N^{2}-1\right) \quad \text { AG } \end{aligned}$	A1	correctly obtaining AG

Question	Answer	Marks	Partial Marks
6(i)	Alternative $\operatorname{PGFG}(t)=\left(t+t^{2}+\ldots+t^{N}\right) / N$ so $\mathrm{G}^{\prime}(t)=\left(1+2 t+\ldots+N t^{N-1}\right) / N$	M1	Correct PGF and differentiation
	$\mathrm{E}(X)=\mathrm{G}^{\prime}(1)=\sum_{x=1}^{N} \frac{1}{N} x=\frac{N(N+1)}{2 N}$	M1	equating and using $\Sigma x \mathrm{f}(x)$ and $\frac{1}{2} N(N+1)$
	$=\frac{1}{2}(N+1) \quad \mathbf{A G}$	A1	correctly obtaining AG
	$\begin{aligned} & \operatorname{Var}(X)=\mathrm{G}^{\prime \prime}(1)+\mathrm{G}^{\prime}(1)-\left[\mathrm{G}^{\prime}(1)\right]^{2} \\ & \mathrm{G}^{\prime \prime}(t)=\left(2+3 \times 2 t+4 \times 3 t+\ldots N(N-1) t^{N-2}\right) / N \end{aligned}$	M1	for correct formula and $\mathrm{G}^{\prime \prime}(\mathrm{t})$
	$\begin{aligned} & \operatorname{Var}(X)=\frac{1}{N} \sum_{x=1}^{N} x(x-1)+\frac{1}{N} \sum_{x=1}^{N} x-\left(\frac{N+1}{2}\right)^{2} \\ & \operatorname{Var}(X)=\frac{1}{N} \sum_{x=1}^{N} x^{2}-\frac{1}{4}(N+1)^{2} \\ & \operatorname{Var}(X)=\frac{(N+1)(2 N+1)}{6}-\frac{1}{4}(N+1)^{2} \end{aligned}$	M1	dep for simplifying and using $\frac{1}{6} N(N+1)(2 N+1)$
	$\begin{aligned} & =\frac{1}{12}(N+1)[2(2 N+1)-3(N+1)] \\ & =\frac{1}{12}\left(N^{2}-1\right) \quad \mathbf{A G} \end{aligned}$	A1	correctly obtaining AG
6(ii)	$\mathrm{E}(A)=\frac{1}{2}(N+1)$	M1	correct statement of $\mathrm{E}(A)$
	Therefore $E_{1}=2 A-1$ (is an unbiased estimator)	A1	correct UE
	$\operatorname{Var}(A)=\frac{N^{2}-1}{12 \times 40}$ aef	B1	correct variance of A soi
	$E_{1} \sim \operatorname{Normal}\left(N\right.$, any $\left.\sigma^{2}\right)$ or (any $\left.\mu, \frac{1}{120}\left(N^{2}-1\right)\right)$	M1	Normal stated, correct μ or σ^{2}
	$\sigma^{2}=\operatorname{Var}\left(E_{1}\right)=4 \operatorname{Var}(A)=\frac{1}{120}\left(N^{2}-1\right)$	A1	FT for correct mean and variance of UE in (ii) only

Question	Answer	Marks	Partial Marks
6(iii)	$E_{2}=\frac{27}{40} B$	B1	but not X or $N=\frac{27}{40} B$)
	$\operatorname{Var}\left(E_{2}\right)=\left(\frac{27}{40}\right)^{2} \times \alpha N^{2}$	B1	FT $q^{2} \alpha N^{2}$ from $E_{2}=q B+c$ only
	$\left(\frac{27}{40}\right)^{2} \times \alpha N^{2}>\frac{1}{120}\left(N^{2}-1\right) \Rightarrow \frac{2187}{40} \alpha>1-\frac{1}{N^{2}}$ oe	M1	inequality and correct useful simplification (e.g. to $a \alpha>b\left(1-\frac{1}{N^{2}}\right)$)
	True for all N iff $\frac{2187}{40} \alpha \geqslant 1$	B1	convincingly dealing with all N. Condone >
	$\alpha \geqslant \frac{40}{2187} \quad[=\operatorname{awrt} 0.0183]$	A1	correct final inequality, even if decimals used. Condone $>$
7(i)	$\frac{1}{2} .800\left(20^{2}-10^{2}\right)+800 g \times 16$	M1	use of both KE and GPE
		A1	correct formulation
	$=248 \mathrm{~kJ}$ from correct working	A1	
	Alternative $20^{2}=10^{2}+2 a \times \frac{16}{\sin \theta}$ and $D-800 g \sin \theta=800 a$	M1	correct use of both $v^{2}=u^{2}+2 a s$ and NII with correct distance
	Eliminating a leads to $\mathrm{WD}=D \times \frac{16}{\sin \theta}=248000 \mathrm{~J}$	A1	correct answer
	Assuming that a is constant	A1	giving assumption
7(ii)		M1	$\frac{189000}{v} \text { soi }$
	$\frac{189000}{v}-7 v^{2}=0$	A1	correct equation
	$v=\sqrt[3]{ } 27000=30\left(\mathrm{~ms}^{-1}\right)$	A1	for $v=30$
8(i)	$m g=\frac{\lambda}{l} e$	M1	$m g=\frac{\lambda}{l} e \text { used }$
	$\Rightarrow e=0.1$	A1	

Question	Answer	Marks	Partial Marks
8(ii)	$\frac{\lambda}{2 l}(x-0.2)^{2}$	M1	using formula for EPE
	$\frac{\lambda}{2 l}(x-0.2)^{2}=m g x$	M1	equating EPE and GPE
	$20(x-0.2)^{2}=4 x$	A1	correct equation
	$25 x^{2}-15 x+1=0$ oe	A1	correct simplified quadratic
	$x=\frac{3+\sqrt{5}}{10}=0.524(\text { or } x \geqslant 0.524)$	A1	$[0.523,0.524] \text { or } \frac{1}{10}(3+\sqrt{5}) \text { oe }$
	Alternative 1 (from slack position) $\frac{\lambda e^{2}}{2 l}$	M1	using formula for EPE
	$\frac{\lambda e^{2}}{2 l}=m g(e+0.2)$	M1	equating EPE and GPE
	$20 e^{2}=4(e+0.2)$	A1	correct equation
	$25 e^{2}-5 e-1=0$ oe	A1	correct simplified quadratic
	$x=0.2+\frac{1 \pm \sqrt{5}}{10}=0.524(\text { or } x \geqslant 0.524)$	A1	$[0.523,0.524] \text { or } \frac{1}{10}(3+\sqrt{5}) \text { oe }$
	Alternative 2 (from eqm position) $\frac{\lambda}{2 l}(h+0.1)^{2}$	M1	using formula for EPE
	$\frac{1}{2} \frac{\lambda}{l}(h+0.1)^{2}=m g(h+0.3)$	M1	equating EPE and GPE
	$20(h+0.1)^{2}=4(h+0.3)$	A1	correct equation
	$20 h^{2}-1=0$ oe	A1	correct simplified quadratic
	$x=0.3+\frac{1}{\sqrt{20}}=0.524(\text { or } x \geqslant 0.524)$	A1	$[0.523,0.524] \text { or } \frac{1}{10}(3+\sqrt{5}) \text { oe }$

Question	Answer	Marks	Partial Marks
8(ii)	Alternative 3 (using SHM equation) $0.4 g-\frac{8(x-0.2)}{0.2}=0.4 \ddot{x} \text { leading to }$	M1	deriving SHM formula in recognisable form
	$\begin{aligned} & \ddot{x}+100 x=30 \\ & 0.4 \times 10 \times 0.2=\frac{1}{2} \times 0.4 \times v^{2} \Rightarrow v=2 \end{aligned}$	M1	Dep on previous M. Energy consideration leading to v as string goes slack
	$\begin{aligned} & x=A \cos 10 t+B \sin 10 t+0.3 \text { or } \\ & x=R \cos (10 t+\phi)+0.3 \end{aligned}$	A1	full correct solution with $\omega=10$ and 2 arbitrary constants
	$R \cos \phi=-0.1$ and $10 R \cos \phi=2$ and attempt to solve simultaneously	M1	using $t=0, x=0.2$ and $v=2$ in correct equations to find A and B or R and ψ
	$R=\sqrt{A^{2}+B^{2}}=\frac{\sqrt{5}}{10}=0.224 \quad \text { so } x=0.524$	A1	cao
	Alternative 4 (using SHM energy equation) $0.4 g-\frac{8(x-0.2)}{0.2}=0.4 \ddot{x} \text { leading to }$	M1	deriving SHM formula in recognisable form
	$\begin{aligned} & \ddot{x}+100 x=30 \\ & 0.4 \times 10 \times 0.2=\frac{1}{2} \times 0.4 \times v^{2} \Rightarrow v=2 \end{aligned}$	M1	Dep on previous M. Energy consideration leading to v as string goes slack
	$\omega=10 \Rightarrow v^{2}+100(x-0.3)^{2}=100 R^{2}$	A1	value of ω soi and fully correct energy equation with 3 terms and an arbitrary constant
	When $x=0.2, v=2$ so $100 R^{2}=5$	M1	using $x=0.2$ and $v=2$ in correct equation to find A
	$\therefore x=\frac{\sqrt{5}}{10}+0.3=0.524$	A1	cao
9(i)	$\cos / \sin \theta=0.8 / 0.6$	B1	3:4:5 triangle implied
	$T \cos \theta=T \sin \theta+0.2 g$	M1	resolving and balancing forces vertically (trig values not nec)
	$0.8 T=0.6 T+2$	A1	correct equation with values
	$T=g=10 \mathrm{~N}$	A1	$T=g$ or 10

Question	Answer	Marks	Partial Marks
9(ii)	$r=0.48$	B1	radius 0.48 , can be implied or seen in (i) (or correct cancellation)
	$T \sin \theta+T \cos \theta=m r \omega^{2}$ or $m \nu^{2} / r$	M1	NII horizontally $=m r \omega^{2}$
	$0.6 T+0.8 T=0.2 \times 0.48 \omega^{2}$ or $0.2 v^{2} / 0.48$	A1	FT for correct equation
	$\omega=12.1$ or $v=5.80$ (or 5.81 or $\sqrt{33.6}$)	A1	correct v or ω
	Time $2 \pi \div \omega=0.520$ seconds	A1	0.52 or awrt 0.520
10(i)(a)	$-m g \sin \theta=m r \ddot{\theta}$ cwo	M1	NII tangentially. Ignore radial
	$\ddot{\theta}=-\frac{g}{r} \sin \theta \approx-\frac{g}{r} \theta$ so approx. SHM	A2	A1 for $\ddot{\theta}$ correct including signs A1 for $\sin \theta \approx \theta$ and stating SHM
	Period $2 \pi \div \omega=2.35(095)$ (seconds)	B1	awrt 2.35 or $\frac{1}{5} \pi \sqrt{14}$
	Alternative 1 (Hor \& Vert) $-T \sin \theta=m a \cos \theta \text { and }$	M1	$\mathrm{NII}(\uparrow)$ and (\leftrightarrow)
	$T \cos \theta-m g \sin \theta=m a \sin \theta$ cwo	A1	both fully correct
	$\ddot{\theta}=-\frac{g}{r} \sin \theta \approx-\frac{g}{r} \theta$ so approx. SHM	A1	eliminating T and using $\sin \theta \approx \theta$ and $a=r \ddot{\theta}$ and stating SHM
	Period $2 \pi \div \omega=2.35(095)$ (seconds)	B1	awrt 2.35 or $\frac{1}{5} \pi \sqrt{14}$
	Alternative 2 (x) $-m g \sin \theta=m \ddot{x}$ cwo	M1	NII tangentially. Ignore radial
	$\ddot{x}=-g \sin \theta \approx-g \theta=-\frac{g}{r} x$ so approx. SHM	A2	A1 for \ddot{x} correct including signs A1 for using $\sin \theta \approx \theta$ and $x=r \theta$ (or just $x \approx r \sin \theta$) and stating SHM
	Period $2 \pi \div \omega=2.35(095)$ (seconds)	B1	awrt 2.35 or $\frac{1}{5} \pi \sqrt{14}$

Question	Answer	Marks	Partial Marks
10(i)(a)	Alternative 3 (energy) $\frac{1}{2} m v^{2}+m g r-m g r \cos \theta=\mathrm{const}$	M1	adding KE and PE (condone sign errors)
	$v=r \dot{\theta}($ or this and $\dot{v}=r \ddot{\theta})$ used to derive DE	M1	eliminating v ($\operatorname{and} /$ or \dot{v})
	$m r^{2} \ddot{\theta} \ddot{\theta}+m g r \sin \theta \dot{\theta}=0 \Rightarrow \ddot{\theta}+\frac{g}{r} \theta \approx 0 \text { so }$ approx. SHM	A1	differentiating implicitly, using $\sin \theta \approx \theta$ and rearranging and stating SHM
	Period $2 \pi \div \omega=2.35(095)$ (seconds)	B1	awrt 2.35 or $\frac{1}{5} \pi \sqrt{14}$
10(i)(b)	$\dot{\theta}^{2}=\omega^{2}\left(\theta_{0}{ }^{2}-\theta^{2}\right)$	M1	SHM energy equation in terms of θ and $\dot{\theta}$ used
	$=\frac{10}{1.4}\left(0.3^{2}-0.2^{2}\right)$	A1	FT for correct equation with their ω
	$v=r \dot{\theta}=1.4 \times 0.5976 \ldots$	M1	using $v=r \dot{\theta}$
	$v=0.836(66 \ldots)$ or $\sqrt{ } 70 / 10$ or awrt 0.837	A1	converting to v
	Alternative 1 (x) $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)$	M1	SHM energy equation in terms of v and x used
	$x=1.4 \theta$ soi	M1	either $x=0.28$ or $a=0.42$
	$v^{2}=\frac{10}{1.4}\left(0.42^{2}-0.28^{2}\right)$	A1	FT for correct equation with their ω
	$v=0.836(66 \ldots)$ or $\sqrt{ } 70 / 10$ or awrt 0.837	A1	
	Alternative 2 (θ solution) Solution to SHM equation is $\theta=A \cos \omega t \quad(+B \sin \omega t)$ so initial conditions $\Rightarrow \theta=0.3 \cos \omega t$	M1	particular solution, their ω
	Substituting $\omega t=\cos ^{-1} \frac{2}{3}$ into $\dot{\theta}= \pm 0.3 \omega \sin \omega t$	M1	Award if $\sin ^{-1}$ into $\pm 0.3 \omega \cos \omega t$
	$v=r \dot{\theta}=1.4 \times 0.5976 \ldots$	M1	using $v=r \dot{\theta}$
	$v=0.836(66 \ldots)$ or $\sqrt{ } 70 / 10$ or awrt 0.837	A1	converting to v (must be +ve)

Question	Answer	Marks	Partial Marks
10(i)(b)	Alternative 3 (x solution) Gen sol to SHM eqn is $x=A \cos \omega t(+B \sin \omega t)$	M1	
	so initial conditions $\Rightarrow x=0.42 \cos \omega t$	A1	$\text { using } t=0 \Rightarrow \text { both } v=0 \text { and }$ $x=1.4 \times 0.3$
	Substituting $\omega t=\cos ^{-1} \frac{2}{3}$ into $\dot{x}= \pm 0.42 \omega \sin \omega t$	M1	Award if $\sin ^{-1}$ in $\pm 0.42 \omega \cos \omega t$
	$v=0.836(66 \ldots)$ or $\sqrt{ } 70 / 10$ or awrt 0.837	A1	must be +ve
10(ii)		M1	KE gained $=$ PE lost
	$\frac{1}{2} m \nu^{2}=m g(1.4 \cos 0.2-1.4 \cos 0.3)$	A1	correct equation
	$\left[v^{2}=0.692\right] \quad v=0.832(13)$	A1	awrt 0.832
	\% difference 0.544\%	A1	awrt 0.544 (could be from correct calculations of $\dot{\theta}$)
11(i)	$U_{y}=-6 \mathrm{soi}$	B1	\perp component of U
	$\therefore u_{y}=3$	M1	$\pm 0.5 \times$ perp component.
	Impulse $=0.2(3--6)=0.2(3+6)$	M1	$0.2 \times\left(\left\|u_{y}\right\|+\left\|U_{y}\right\|\right)$
	$=1.8 \mathrm{Ns}$	A1	ignore units
	perpendicular to and away from the plane	B1	
11(ii)	$u_{x}=8, a_{y}=(-) 8$	B1	both of these soi in (ii)
	$y=3 t-4 t^{2}($ or $0=3-8 \times 0.5 t$ or $-3=3-8 t)$	M1	y-equation used, their u_{y}, a_{y}
	$=0$ at $t=0.75$ (or $t(=2 \times 3 / 8)=0.75)$	A1	obtaining $t=0.75$ validly
	$x=8 t-3 t^{2}=4.3125$ or awrt 4.31	A1	using x-equation to obtain $4 \frac{5}{16}$ oe
11(iii)	$v_{y}=-3, \therefore u_{y}^{\prime}=1.5$	M1	$\left\|u_{y}^{\prime}\right\|=\left\|0.5 v_{y}\right\|$
	$\begin{aligned} & 1.5 t-4 t^{2}=0 \text { or } 0=1.5-8 \times 0.5 t \text { or } \\ & -1.5=1.5-8 t \end{aligned}$	M1	y-eqn., new $u_{y}\left(\right.$ and old a_{y})
	$t=0.375$	A1	finding new t
	Total time is $0.75+0.375=1.125$ cwo	A1	awrt 1.13 or $1 \frac{1}{8}$

Question	Answer	Marks	Partial Marks
$12(\mathrm{i})$	$\mathrm{M}(B): 4 F=5 g \times 2 \sin 60^{\circ}$ $\mathrm{M}(A): 2 \times 5 g \cos 30^{\circ}=4 \times T \cos 30^{\circ}$ $\mathrm{M}(C): 2 \times F=2 \times T \cos 30^{\circ}$ $\mathrm{NII}(\perp A B): F+T \cos 30^{\circ}=5 g \cos 30^{\circ}$ $\left(\mathrm{NII}(/ / A B): T \sin 30^{\circ}+N=5 g \sin 30^{\circ}\right)$ $\left(\mathrm{NII}(\leftrightarrow): N \cos 30^{\circ}=F \sin 30^{\circ}\right)$ $\left(\mathrm{NII}(\uparrow): N \sin 30^{\circ}+F \cos 30^{\circ}+T=5 g\right)$	M1 for attempt to take moments and attempt to derive one other equation by NII or moments about another point M1 for deriving one useful equation M1 for deriving a second useful equation (or 2 nd and 3 rd if N is involved)	
	$F=12.5 \sqrt{ } 3=21.65 \mathrm{~N}$ cwo	A1	$[21.6,21.7]$ or $12.5 \sqrt{ } 3$ oe oe
	$T=25 N \operatorname{cwo}$	A1	25 or awrt 25.0

Question	Answer	Marks	Partial Marks
12(ii)		M1	dep for attempt at moments equation
	One of: $\begin{aligned} \mathrm{M}(C) & : 2 N_{B} \cos 30^{\circ} \\ = & 2 N_{A} \cos 60^{\circ}+2 F_{A} \cos 30^{\circ}+2 F_{B} \cos 60^{\circ} \\ \mathrm{M}(A) & 2 W+4 F_{B} \sin 30^{\circ}=4 N_{B} \sin 60^{\circ} \\ \mathrm{M}(B): & 2 W=4 N_{A} \sin 30^{\circ}+4 F_{A} \sin 60^{\circ} \end{aligned}$	A1	one correct moments equation
	Then completing either: Both of: $\mathrm{M}(C)$ $\mathrm{NII}(\leftrightarrow): N_{A} \sin 60^{\circ}$ $=F_{A} \sin 30^{\circ}+N_{B} \sin 30^{\circ}+F_{B} \sin 60^{\circ}$ or: Three of: One of $\mathrm{M}(\mathrm{C}) \& \mathrm{NII}(\leftrightarrow)$ $\mathrm{M}(A)$ and/or $\mathrm{M}(B)$ $\mathrm{NII}\left(/ / \Pi_{A}\right): F_{A}+N_{B}=W \cos 30^{\circ}$ $\operatorname{NII}\left(\perp \Pi_{A}\right): N_{A}=F_{B}+W \sin 30^{\circ}$ $\operatorname{NII}(\uparrow): W+F_{B} \cos 60^{\circ}$ $=N_{A} \cos 60^{\circ}+F_{A} \cos 30^{\circ}+N_{B} \cos 30^{\circ}$	M1	Dep on first M1 for other equation(s) to complete: either two equations, neither involving $W(=5 g)$, or three equations, some involving W. In each equation condone sign errors and $60 / 30$ or \sin / \cos errors and calc of $m g$. But correct forces or moments 'resolved' where necessary, required for 2 nd M1. Mark the equations used or, if both not used, the 2 that give the most marks.
	$F_{A}=\mu_{A} N_{A}$ and $F_{B}=\mu_{B} N_{B}$	B1	Can be on diagram or in working
	$\begin{aligned} & N_{B}\left(\sqrt{ } 3-\mu_{B}\right)=N_{A}\left(1+\sqrt{ } 3 \mu_{A}\right) \\ & N_{B}\left(1+\sqrt{ } 3 \mu_{B}\right)=N_{A}\left(\sqrt{3}-\mu_{A}\right) \end{aligned}$	M1	Dep on second M1 for simplifying to 2 sim equations in 2 eliminatable 'unknowns' oe elimination
	$\frac{\sqrt{3}-\mu_{B}}{1+\sqrt{3} \mu_{B}}=\frac{1+\sqrt{3} \mu_{A}}{\sqrt{3}-\mu_{A}}$	M1	Dep on second M1 for obtaining single equation in μ_{A} and μ_{B} only
	$\sqrt{ } 3\left(\mu_{A}+\mu_{B}\right)+\mu_{A} \mu_{B}=1$	M1	Dep on second M1 for making μ_{B} subject of formula and using exact values of $\mathrm{cos} / \mathrm{sin}$
	$\mu_{B}=\frac{1-\sqrt{3} \mu_{A}}{\sqrt{3}+\mu_{A}}$	A1	final answer in given form, cwo $(\alpha=\sqrt{ } 3)$ Note: Form of answer given so must see full working with factorisation leading to single term in μ_{B} for final M1A1 Equation must have μ_{A}, μ_{B} and $\mu_{A} \mu_{B}$ terms for M1.

